By Plancherel, for any f ∈ L 2 ( R ) f \in L^2\p{\R} f ∈ L 2 ( R ) , we have
Q ( f , h ) = ∫ R 2 f ^ ( x ) − e i h x f ^ ( x ) − e − i h x f ^ ( x ) h 2 f ^ ( x ) ‾ d x = ∫ R 2 − 2 cos ( h x ) h 2 ∣ f ^ ( x ) ∣ 2 d x . \begin{aligned}
Q\p{f, h}
&= \int_\R \frac{2\hat{f}\p{x} - e^{ihx}\hat{f}\p{x} - e^{-ihx}\hat{f}\p{x}}{h^2} \conj{\hat{f}\p{x}} \,\diff{x} \\
&= \int_\R \frac{2 - 2\cos\p{hx}}{h^2} \abs{\hat{f}\p{x}}^2 \,\diff{x}.
\end{aligned} Q ( f , h ) = ∫ R h 2 2 f ^ ( x ) − e ih x f ^ ( x ) − e − ih x f ^ ( x ) f ^ ( x ) d x = ∫ R h 2 2 − 2 cos ( h x ) ∣ ∣ f ^ ( x ) ∣ ∣ 2 d x .
Let { f n } n ⊆ E \set{f_n}_n \subseteq E { f n } n ⊆ E such that f n → f f_n \to f f n → f in L 2 L^2 L 2 . Passing to a subsequence if necessary, we may assume without loss of generality that f n → f f_n \to f f n → f almost everywhere. By applying Fatou's lemma in h h h ,
∫ R x 2 ∣ f n ^ ( x ) ∣ 2 d x = ∫ R lim inf h → 0 2 − 2 cos ( h x ) h 2 ∣ f n ^ ( x ) ∣ 2 d x ≤ lim inf h → 0 Q ( f n , h ) ≤ 1 , \begin{aligned}
\int_\R x^2 \abs{\hat{f_n}\p{x}}^2 \,\diff{x}
&= \int_\R \liminf_{h\to0} \frac{2 - 2\cos\p{hx}}{h^2} \abs{\hat{f_n}\p{x}}^2 \,\diff{x} \\
&\leq \liminf_{h\to0} Q\p{f_n, h} \\
&\leq 1,
\end{aligned} ∫ R x 2 ∣ ∣ f n ^ ( x ) ∣ ∣ 2 d x = ∫ R h → 0 lim inf h 2 2 − 2 cos ( h x ) ∣ ∣ f n ^ ( x ) ∣ ∣ 2 d x ≤ h → 0 lim inf Q ( f n , h ) ≤ 1 ,
so x ∣ f n ^ ( x ) ∣ ∈ L 2 ( R ) x\abs{\hat{f_n}\p{x}} \in L^2\p{\R} x ∣ ∣ f n ^ ( x ) ∣ ∣ ∈ L 2 ( R ) for each n n n . Now applying Fatou's lemma in n n n ,
∫ R x 2 ∣ f ^ ( x ) ∣ d x ≤ 1. \int_\R x^2\abs{\hat{f}\p{x}} \,\diff{x}
\leq 1. ∫ R x 2 ∣ ∣ f ^ ( x ) ∣ ∣ d x ≤ 1.
To complete the proof, observe that
1 − cos ( θ ) = ∫ 0 θ sin t d t ≤ ∫ 0 θ t d t = θ 2 2 . 1 - \cos\p{\theta}
= \int_0^\theta \sin{t} \,\diff{t}
\leq \int_0^\theta t \,\diff{t}
= \frac{\theta^2}{2}. 1 − cos ( θ ) = ∫ 0 θ sin t d t ≤ ∫ 0 θ t d t = 2 θ 2 .
Hence,
2 − 2 cos ( h x ) h 2 ≤ x 2 . \frac{2 - 2\cos\p{hx}}{h^2}
\leq x^2. h 2 2 − 2 cos ( h x ) ≤ x 2 .
Thus, by dominated convergence,
lim h → 0 Q ( f , h ) = ∫ R lim h → 0 2 − 2 cos ( h x ) h 2 ∣ f ^ ( x ) ∣ 2 d x = ∫ R x 2 ∣ f ^ ( x ) ∣ 2 d x ≤ 1 , \begin{aligned}
\lim_{h\to0} Q\p{f, h}
&= \int_\R \lim_{h\to0} \frac{2 - 2\cos\p{hx}}{h^2} \abs{\hat{f}\p{x}}^2 \,\diff{x} \\
&= \int_\R x^2 \abs{\hat{f}\p{x}}^2 \,\diff{x} \\
&\leq 1,
\end{aligned} h → 0 lim Q ( f , h ) = ∫ R h → 0 lim h 2 2 − 2 cos ( h x ) ∣ ∣ f ^ ( x ) ∣ ∣ 2 d x = ∫ R x 2 ∣ ∣ f ^ ( x ) ∣ ∣ 2 d x ≤ 1 ,
so f ∈ E f \in E f ∈ E , which was what we wanted to show.