Spring 2018 - Problem 2

Fourier analysis, Lp spaces

Given fL2(R)f \in L^2\p{\R} and h>0h > 0, we define

Q(f,h)=R2f(x)f(x+h)f(xh)h2f(x)dx.Q\p{f, h} = \int_\R \frac{2f\p{x} - f\p{x + h} - f\p{x - h}}{h^2} f\p{x} \,\diff{x}.
  1. Show that

    Q(f,h)0for all fL2(R) and all h>0.Q\p{f, h} \geq 0 \quad\text{for all } f \in L^2\p{\R} \text{ and all } h > 0.
  2. Show that the set

    E={fL2(R)|lim suph0Q(f,h)1}E = \set{f \in L^2\p{\R} \st \limsup_{h\to0} Q\p{f, h} \leq 1}

    is closed in L2(R)L^2\p{\R}.

Solution.
  1. By Cauchy-Schwarz and translation invariance,

    Rf(x)f(x+h)dxfL22andRf(x)f(xh)dxfL22.\abs{\int_\R f\p{x}f\p{x + h} \,\diff{x}} \leq \norm{f}_{L^2}^2 \quad\text{and}\quad \abs{\int_\R f\p{x}f\p{x - h} \,\diff{x}} \leq \norm{f}_{L^2}^2.

    Thus,

    Q(f,h)=1h2R2f(x)2f(x)f(x+h)f(x)f(xh)dx=1h2[(fL22Rf(x)f(x+h)dx)+(fL22Rf(x)f(xh)dx)]0.\begin{aligned} Q\p{f, h} &= \frac{1}{h^2} \int_\R 2\abs{f\p{x}}^2 - f\p{x}f\p{x + h} - f\p{x}f\p{x - h} \,\diff{x} \\ &= \frac{1}{h^2}\br{\p{\norm{f}_{L^2}^2 - \int_\R f\p{x}f\p{x + h} \,\diff{x}} + \p{\norm{f}_{L^2}^2 - \int_\R f\p{x}f\p{x - h} \,\diff{x}}} \\ &\geq 0. \end{aligned}
  2. By Plancherel, for any fL2(R)f \in L^2\p{\R}, we have

    Q(f,h)=R2f^(x)eihxf^(x)eihxf^(x)h2f^(x)dx=R22cos(hx)h2f^(x)2dx.\begin{aligned} Q\p{f, h} &= \int_\R \frac{2\hat{f}\p{x} - e^{ihx}\hat{f}\p{x} - e^{-ihx}\hat{f}\p{x}}{h^2} \conj{\hat{f}\p{x}} \,\diff{x} \\ &= \int_\R \frac{2 - 2\cos\p{hx}}{h^2} \abs{\hat{f}\p{x}}^2 \,\diff{x}. \end{aligned}

    Let {fn}nE\set{f_n}_n \subseteq E such that fnff_n \to f in L2L^2. Passing to a subsequence if necessary, we may assume without loss of generality that fnff_n \to f almost everywhere. By applying Fatou's lemma in hh,

    Rx2fn^(x)2dx=Rlim infh022cos(hx)h2fn^(x)2dxlim infh0Q(fn,h)1,\begin{aligned} \int_\R x^2 \abs{\hat{f_n}\p{x}}^2 \,\diff{x} &= \int_\R \liminf_{h\to0} \frac{2 - 2\cos\p{hx}}{h^2} \abs{\hat{f_n}\p{x}}^2 \,\diff{x} \\ &\leq \liminf_{h\to0} Q\p{f_n, h} \\ &\leq 1, \end{aligned}

    so xfn^(x)L2(R)x\abs{\hat{f_n}\p{x}} \in L^2\p{\R} for each nn. Now applying Fatou's lemma in nn,

    Rx2f^(x)dx1.\int_\R x^2\abs{\hat{f}\p{x}} \,\diff{x} \leq 1.

    To complete the proof, observe that

    1cos(θ)=0θsintdt0θtdt=θ22.1 - \cos\p{\theta} = \int_0^\theta \sin{t} \,\diff{t} \leq \int_0^\theta t \,\diff{t} = \frac{\theta^2}{2}.

    Hence,

    22cos(hx)h2x2.\frac{2 - 2\cos\p{hx}}{h^2} \leq x^2.

    Thus, by dominated convergence,

    limh0Q(f,h)=Rlimh022cos(hx)h2f^(x)2dx=Rx2f^(x)2dx1,\begin{aligned} \lim_{h\to0} Q\p{f, h} &= \int_\R \lim_{h\to0} \frac{2 - 2\cos\p{hx}}{h^2} \abs{\hat{f}\p{x}}^2 \,\diff{x} \\ &= \int_\R x^2 \abs{\hat{f}\p{x}}^2 \,\diff{x} \\ &\leq 1, \end{aligned}

    so fEf \in E, which was what we wanted to show.