Spring 2018 - Problem 1

Lebesgue differentiation theorem

Suppose fL1(R)f \in L^1\p{\R} satisfies

lim suph0Rf(x+h)f(x)hdx=0.\limsup_{h\to0} \int_\R \abs{\frac{f\p{x + h} - f\p{x}}{h}} \,\diff{x} = 0.
Solution.

Define

F(x)=xf(y)dy,F\p{x} = \int_{-\infty}^x f\p{y} \,\diff{y},

which is well-defined since fL1(R)f \in L^1\p{\R}. Observe that

xf(y+h)dy=x+hf(y)dy=F(x+h),\int_{-\infty}^x f\p{y + h} \,\diff{y} = \int_{-\infty}^{x+h} f\p{y} \,\diff{y} = F\p{x + h},

so that

F(x+h)F(x)xf(y+h)f(y)dyRf(y+h)f(y)dy,\abs{F\p{x + h} - F\p{x}} \leq \int_{-\infty}^x \abs{f\p{y + h} - f\p{y}} \,\diff{y} \leq \int_\R \abs{f\p{y + h} - f\p{y}} \,\diff{y},

Let a,bRa, b \in \R be Lebesgue points. Then for h>0h > 0, the calculation above gives

12h(aha+hf(y)dybhb+hf(y)dy)=12h(F(a+h)F(ah))(F(b+h)F(bh))12h(F(a+h)F(a)+F(a)F(ah)+F(b+h)F(b)+F(b)F(bh))12h4Rf(y+h)f(y)dy=2Rf(y+h)f(y)hdy.\begin{aligned} \frac{1}{2h} \abs{\p{\int_{a-h}^{a+h} f\p{y} \,\diff{y} - \int_{b-h}^{b+h} f\p{y} \,\diff{y}}} &= \frac{1}{2h} \abs{\p{F\p{a + h} - F\p{a - h}} - \p{F\p{b + h} - F\p{b - h}}} \\ &\leq \frac{1}{2h} \p{\abs{F\p{a + h} - F\p{a}} + \abs{F\p{a} - F\p{a - h}} + \abs{F\p{b + h} - F\p{b}} + \abs{F\p{b} - F\p{b - h}}} \\ &\leq \frac{1}{2h} \cdot 4 \int_\R \abs{f\p{y + h} - f\p{y}} \,\diff{y} \\ &= 2\int_\R \abs{\frac{f\p{y + h} - f\p{y}}{h}} \,\diff{y}. \end{aligned}

By the Lebesgue differentiation theorem, we get

f(a)f(b)2lim suph0Rf(y+h)f(y)hdy=0,\abs{f\p{a} - f\p{b}} \leq 2\limsup_{h\to0} \int_\R \abs{\frac{f\p{y + h} - f\p{y}}{h}} \,\diff{y} = 0,

by assumption, i.e., f(a)=f(b)f\p{a} = f\p{b}. Thus, because almost every xRx \in \R is a Lebesgue point, we see that ff must be a constant. Since fL1(R)f \in L^1\p{\R}, it follows that f=0f = 0, which was what we wanted to show.