Recall that πcot(πz) has the expansion
πcot(πz)=z1+n=1∑∞z2−n22z⟹g(z)=−1−n=1∑∞z2−n22z2.
Let f(z)=−1−∑n=1∞z−n22z so that f(z2)=g(z), i.e., the k-th coefficient in the Maclaurin series expansion of f corresponds to the 2k-th coefficient of g. Observe that if k≥1,
(dxkdkf(z))(0)=−n=1∑∞(m=0∑k(mk)(dxmdmz)(0)(dxk−mdk−mz−n22)(0))=−n=1∑∞(1k)(dxk−1dk−1z−n22)(0)=−n=1∑∞(−n2)k2k(−1)k−1(k−1)!=n=1∑∞n2k2⋅k!.
Thus, if bk is the k-th coefficient of the Maclaurin series of f, then
a2k=bk=k!1n=1∑∞n2k2⋅k!=n=1∑∞n2k2.