Fall 2018 - Problem 9

calculation

Consider the meromorphic function g(z)=πzcot(πz)g\p{z} = -\pi z\cot\p{\pi z} on the entire plane C\C.

  1. Find all poles of gg and determine the residue of gg at each pole.

  2. In the Taylor series representation k=0akzk\sum_{k=0}^\infty a_kz^k of g(z)g\p{z} about z=0z = 0, show that for each k1k \geq 1,

    a2k=n12n2k.a_{2k} = \sum_{n\geq1} \frac{2}{n^{2k}}.
Solution.
  1. Since cot(πz)=cos(πz)sin(πz)\cot\p{\pi z} = \frac{\cos\p{\pi z}}{\sin\p{\pi z}}, it follows that cotπz\cot{\pi z} has simple poles at every integer. Thus, gg has a simple pole at every non-zero integer, and these have residue given by

    Res(g;k)=limzk(zk)g(z)=(limzkπzcos(πz))(limxkxksin(πx))=πkcos(πk)(limxk1πcos(πx))=k.\begin{aligned} \Res{g}{k} &= \lim_{z \to k} \,\p{z - k}g\p{z} \\ &= \p{\lim_{z \to k} -\pi z\cos\p{\pi z}} \p{\lim_{x \to k} \frac{x - k}{\sin\p{\pi x}}} \\ &= -\pi k\cos\p{\pi k} \p{\lim_{x \to k} \frac{1}{\pi\cos\p{\pi x}}} \\ &= -k. \end{aligned}
  2. Recall that πcot(πz)\pi\cot\p{\pi z} has the expansion

    πcot(πz)=1z+n=12zz2n2    g(z)=1n=12z2z2n2.\pi \cot\p{\pi z} = \frac{1}{z} + \sum_{n=1}^\infty \frac{2z}{z^2 - n^2} \implies g\p{z} = -1 - \sum_{n=1}^\infty \frac{2z^2}{z^2 - n^2}.

    Let f(z)=1n=12zzn2f\p{z} = -1 - \sum_{n=1}^\infty \frac{2z}{z - n^2} so that f(z2)=g(z)f\p{z^2} = g\p{z}, i.e., the kk-th coefficient in the Maclaurin series expansion of ff corresponds to the 2k2k-th coefficient of gg. Observe that if k1k \geq 1,

    (dkdxkf(z))(0)=n=1(m=0k(km)(dmdxmz)(0)(dkmdxkm2zn2)(0))=n=1(k1)(dk1dxk12zn2)(0)=n=12k(1)k1(k1)!(n2)k=n=12k!n2k.\begin{aligned} \p{\deriv{^k}{x^k} f\p{z}}\p{0} &= -\sum_{n=1}^\infty \p{\sum_{m=0}^k \binom{k}{m} \p{\deriv{^m}{x^m} z}\p{0} \p{\deriv{^{k-m}}{x^{k-m}} \frac{2}{z - n^2}}\p{0}} \\ &= -\sum_{n=1}^\infty \binom{k}{1} \p{\deriv{^{k-1}}{x^{k-1}} \frac{2}{z - n^2}}\p{0} \\ &= -\sum_{n=1}^\infty \frac{2k\p{-1}^{k-1}\p{k-1}!}{\p{-n^2}^k} \\ &= \sum_{n=1}^\infty \frac{2 \cdot k!}{n^{2k}}. \end{aligned}

    Thus, if bkb_k is the kk-th coefficient of the Maclaurin series of ff, then

    a2k=bk=1k!n=12k!n2k=n=12n2k.a_{2k} = b_k = \frac{1}{k!} \sum_{n=1}^\infty \frac{2 \cdot k!}{n^{2k}} = \sum_{n=1}^\infty \frac{2}{n^{2k}}.