Fall 2018 - Problem 10

calculation, residue theorem

Let f(z)=zβ1+z2f\p{z} = \frac{z^\beta}{1 + z^2}, where we take the standard branch of Logz\Log{z} with branch cut at the negative imaginary axis.

For 0<ε<1<R0 < \epsilon < 1 < R, let γε,R\gamma_{\epsilon,R} be the contour consisting of the segments [R,ε]\br{-R, -\epsilon} and [ε,R]\br{\epsilon, R} along with the semicircles {Reiθ0θπ}\set{Re^{i\theta} \mid 0 \leq \theta \leq \pi} and {εeiθ0θπ}\set{\epsilon e^{i\theta} \mid 0 \leq \theta \pi}, oriented counter-clockwise.

If CRC_R is the semicircle of radius RR, then

CRf(z)dz=0πRβeiβθ1+R2ei2θiReiθdθ0πRβ+1R21dθ=2πRβ+1R21R0,\begin{aligned} \abs{\int_{C_R} f\p{z} \,\diff{z}} &= \abs{\int_0^\pi \frac{R^\beta e^{i\beta\theta}}{1 + R^2 e^{i2\theta}} \cdot iRe^{i\theta} \,\diff\theta} \\ &\leq \int_0^\pi \frac{R^{\beta+1}}{R^2 - 1} \,\diff\theta \\ &= \frac{2\pi R^{\beta+1}}{R^2 - 1} \xrightarrow{R\to\infty} 0, \end{aligned}

since β+1<2\beta + 1 < 2. Similarly, on the smaller semicircle CεC_\epsilon, we get

Cεf(z)dz2πεβ+11ε2ε00,\abs{\int_{C_\epsilon} f\p{z} \,\diff{z}} \leq \frac{2\pi \epsilon^{\beta+1}}{1 - \epsilon^2} \xrightarrow{\epsilon\to0} 0,

since β+1>0\beta + 1 > 0. Moreover, the only residue in the interior of our curve is at z=iz = i, which gives

Res(f;i)=limzi(z+i)f(z)=limzizβz+i=iβ2i=eiβπ/22i.\Res{f}{i} = \lim_{z\to i} \p{z + i}f\p{z} = \lim_{z\to i} \frac{z^\beta}{z + i} = \frac{i^\beta}{2i} = \frac{e^{i\beta\pi/2}}{2i}.

Finally, observe that f(x)=(1)βf(x)=eiβπf(x)f\p{-x} = \p{-1}^\beta f\p{x} = e^{i\beta\pi} f\p{x}. Altogether, we get

(1+eiβπ)0xβ1+x2dx=2πieiβπ2i    0xβ1+x2dx=πeiβπ/2+eiβπ/2=π2cos(βπ2).\begin{gathered} \p{1 + e^{i\beta\pi}} \int_0^\infty \frac{x^\beta}{1 + x^2} \,\diff{x} = 2\pi i \cdot \frac{e^{i\beta\pi}}{2i} \\ \implies \int_0^\infty \frac{x^\beta}{1 + x^2} \,\diff{x} = \frac{\pi}{e^{-i\beta\pi/2} + e^{i\beta\pi/2}} = \frac{\pi}{2\cos\p{\frac{\beta\pi}{2}}}. \end{gathered}
Solution.