Fall 2018 - Problem 1

construction, Lp spaces

Let {fn}n\set{f_n}_n be a sequence of real-valued Lebesgue measurable functions on R\R and let ff be another such function. Assume that

  1. fnff_n \to f, Lebesgue almost everywhere,
  2. Rxfn(x)dx100\int_\R \abs{x} \abs{f_n\p{x}} \,\diff{x} \leq 100, for all nn, and
  3. Rfn(x)2dx100\int_\R \abs{f_n\p{x}}^2 \,\diff{x} \leq 100, for all nn>

Prove that fnL1f_n \in L^1 for all nn, that fL1f \in L^1, and that fnfL10\norm{f_n - f}_{L^1} \to 0. Also show that neither assumption (ii) nor assumption (iii) can be omitted while making these deductions.

Solution.

Let gg be a Lebesgue measurable function on R\R satisfying conditions (ii) and (iii). Then

Rg(x)dx={x1}g(x)dx+{x>1}g(x)dx={x1}{g(x)1}g(x)dx+{x1}{g(x)<1}g(x)dx+{x>1}g(x)dx{x1}{g(x)1}g(x)2dx+{x1}dx+{x>1}xg(x)dx200+2<,\begin{aligned} \int_\R \abs{g\p{x}} \,\diff{x} &= \int_{\set{\abs{x} \leq 1}} \abs{g\p{x}} \,\diff{x} + \int_{\set{\abs{x} > 1}} \abs{g\p{x}} \,\diff{x} \\ &= \int_{\set{\abs{x} \leq 1} \cap \set{\abs{g\p{x}} \geq 1}} \abs{g\p{x}} \,\diff{x} + \int_{\set{\abs{x} \leq 1} \cap \set{\abs{g\p{x}} < 1}} \abs{g\p{x}} \,\diff{x} + \int_{\set{\abs{x} > 1}} \abs{g\p{x}} \,\diff{x} \\ &\leq \int_{\set{\abs{x} \leq 1} \cap \set{\abs{g\p{x}} \geq 1}} \abs{g\p{x}}^2 \,\diff{x} + \int_{\set{\abs{x} \leq 1}} \,\diff{x} + \int_{\set{\abs{x} > 1}} \abs{x} \abs{g\p{x}} \,\diff{x} \\ &\leq 200 + 2 \\ &< \infty, \end{aligned}

so gL1g \in L^1. Hence, fnL1f_n \in L^1 for all nn. By Fatou's lemma, we also see that

Rxf(x)dxlim infnRxfn(x)dx100Rf(x)2dxlim infnRfn(x)2dx100,\begin{gathered} \int_\R \abs{x} \abs{f\p{x}} \,\diff{x} \leq \liminf_{n\to\infty} \int_\R \abs{x} \abs{f_n\p{x}} \,\diff{x} \leq 100 \\ \int_\R \abs{f\p{x}}^2 \,\diff{x} \leq \liminf_{n\to\infty} \int_\R \abs{f_n\p{x}}^2 \,\diff{x} \leq 100, \end{gathered}

so ff satisfies the same conditions, i.e., fL1f \in L^1 as well. To prove L1L^1 convergence, fix ε>0\epsilon > 0. Then observe that

{xR}fn(x)dx{xR}xfn(x)xdx100R,\int_{\set{\abs{x} \geq R}} \abs{f_n\p{x}} \,\diff{x} \leq \int_{\set{\abs{x} \geq R}} \frac{\abs{x}\abs{f_n\p{x}}}{\abs{x}} \,\diff{x} \leq \frac{100}{R},

and this inequality is true with fnf_n replaced with ff as well. Thus, we may pick R>0R > 0 large enough so that {xR}fn(x)dx<ε\int_{\set{\abs{x} \geq R}} \abs{f_n\p{x}} \,\diff{x} < \epsilon and {xR}f(x)dx<ε\int_{\set{\abs{x} \geq R}} \abs{f\p{x}} \,\diff{x} < \epsilon. On the finite measure set B(0,R)B\p{0, R}, we may apply Egorov's theorem, since fnff_n \to f almost everywhere. Hence, we get EB(0,R)E \subseteq B\p{0, R} such that fnff_n \to f uniformly on B(0,R)EB\p{0, R} \setminus E and with m(E)<εm\p{E} < \epsilon. Thus, if nn is large enough, then fnf<ε2R\abs{f_n - f} < \frac{\epsilon}{2R} on B(0,R)EB\p{0, R} \setminus E, and so

RfnfdxB(0,R)fnfdx+{xR}fndx+{xR}fdxEfnfdx+B(0,R)Efnfdx+2εfnfL2m(E)1/2+3εε1/2(fnL2+fL2)+3ε20ε1/2+3ε,\begin{aligned} \int_\R \abs{f_n - f} \,\diff{x} &\leq \int_{B\p{0,R}} \abs{f_n - f} \,\diff{x} + \int_{\set{\abs{x} \geq R}} \abs{f_n} \,\diff{x} + \int_{\set{\abs{x} \geq R}} \abs{f} \,\diff{x} \\ &\leq \int_E \abs{f_n - f} \,\diff{x} + \int_{B\p{0,R} \setminus E} \abs{f_n - f} \,\diff{x} + 2\epsilon \\ &\leq \norm{f_n - f}_{L^2} m\p{E}^{1/2} + 3\epsilon \\ &\leq \epsilon^{1/2}\p{\norm{f_n}_{L^2} + \norm{f}_{L^2}} + 3\epsilon \\ &\leq 20\epsilon^{1/2} + 3\epsilon, \end{aligned}

so fnfL10\norm{f_n - f}_{L^1} \to 0.

To see that (2) is necessary, consider fn(x)=f(x)=x1χB(0,1)f_n\p{x} = f\p{x} = \abs{x}^{-1} \chi_{B\p{0,1}}. Then these satisfy (1) trivially and satisfy (2) since xfn(x)=χB(0,1)\abs{x}\abs{f_n\p{x}} = \chi_{B\p{0,1}}, which certainly has integral bounded by 100100. Moreover, it does not satisfy (3) since fnL2f_n \notin L^2. However, fnL1f_n \notin L^1, since x1\abs{x}^{-1} is not integrable near the origin, so the conclusion fails.

Similarly, to see that (3) is necessary, let fn(x)=f(x)=x1χ{x1}f_n\p{x} = f\p{x} = \abs{x}^{-1} \chi_{\set{\abs{x} \geq 1}}. This it's clear that (1) and (3) are satisfied, but (2) is not satisfied since xfn(x)=χ{x1}\abs{x}\abs{f_n\p{x}} = \chi_{\set{\abs{x} \geq 1}}, which has infinite mass. As before, fnL1f_n \notin L^1, so the conclusion fails.