Let R > 0 R > 0 R > 0 be as in the problem statement. Observe that f ( R z ) f\p{Rz} f ( R z ) has roots a n R \frac{a_n}{R} R a n for ∣ a n ∣ < R \abs{a_n} < R ∣ a n ∣ < R , so let
g ( z ) = ∏ ∣ a n ∣ < R z − ( a n / R ) 1 − ( a n ‾ / R ) z g\p{z} = \prod_{\abs{a_n} < R} \frac{z - \p{a_n/R}}{1 - \p{\conj{a_n}/R}z} g ( z ) = ∣ a n ∣ < R ∏ 1 − ( a n / R ) z z − ( a n / R )
be the associated Blaschke product. g g g is a product of automorphisms of the disk, hence holomorphic, and it has the exact same zeroes as f ( R z ) f\p{Rz} f ( R z ) with the same multiplicities. Moreover, since Blaschke factors have norm 1 1 1 whenever ∣ z ∣ = 1 \abs{z} = 1 ∣ z ∣ = 1 , we have ∣ g ( z ) ∣ = 1 \abs{g\p{z}} = 1 ∣ g ( z ) ∣ = 1 on ∂ D \partial\D ∂ D . Thus, f ( R z ) g ( z ) \frac{f\p{Rz}}{g\p{z}} g ( z ) f ( R z ) is a holomorphic function which does not vanish on D ‾ \cl{\D} D , which means that log ∣ f ( R z ) g ( z ) ∣ \log\,\abs{\frac{f\p{Rz}}{g\p{z}}} log ∣ ∣ g ( z ) f ( R z ) ∣ ∣ is harmonic as the real part of a logarithm. Hence, by the mean value property,
1 2 π ∫ 0 2 π log ∣ f ( R e i θ ) ∣ d θ = 1 2 π ∫ 0 2 π log ∣ f ( R e i θ ) g ( e i θ ) ∣ d θ = log ∣ f ( 0 ) g ( 0 ) ∣ = log ∣ f ( 0 ) ∣ − ∑ ∣ a n ∣ < R log ∣ a n R ∣ = log ∣ f ( 0 ) ∣ + ∑ ∣ a n ∣ < R log ∣ R a n ∣ . \begin{aligned}
\frac{1}{2\pi} \int_0^{2\pi} \log\,\abs{f\p{Re^{i\theta}}} \,\diff\theta
&= \frac{1}{2\pi} \int_0^{2\pi} \log\,\abs{\frac{f\p{Re^{i\theta}}}{g\p{e^{i\theta}}}} \,\diff\theta \\
&= \log\,\abs{\frac{f\p{0}}{g\p{0}}} \\
&= \log\,\abs{f\p{0}} - \sum_{\abs{a_n} < R} \log\,\abs{\frac{a_n}{R}} \\
&= \log\,\abs{f\p{0}} + \sum_{\abs{a_n} < R} \log\,\abs{\frac{R}{a_n}}.
\end{aligned} 2 π 1 ∫ 0 2 π log ∣ ∣ f ( R e i θ ) ∣ ∣ d θ = 2 π 1 ∫ 0 2 π log ∣ ∣ g ( e i θ ) f ( R e i θ ) ∣ ∣ d θ = log ∣ ∣ g ( 0 ) f ( 0 ) ∣ ∣ = log ∣ f ( 0 ) ∣ − ∣ a n ∣ < R ∑ log ∣ ∣ R a n ∣ ∣ = log ∣ f ( 0 ) ∣ + ∣ a n ∣ < R ∑ log ∣ ∣ a n R ∣ ∣ .
Let N ( R ) = { n ∣ ∣ a n ∣ < R } N\p{R} = \set{n \mid \abs{a_n} < R} N ( R ) = { n ∣ ∣ a n ∣ < R } . Then
1 2 π ∫ 0 2 π log ∣ f ( 2 R e i θ ) ∣ d θ = log ∣ f ( 0 ) ∣ + ∑ ∣ a n ∣ < 2 R log ∣ 2 R a n ∣ ≥ log ∣ f ( 0 ) ∣ + ∑ ∣ a n ∣ < R log ∣ 2 R R ∣ ≥ log ∣ f ( 0 ) ∣ + N ( R ) log 2. \begin{aligned}
\frac{1}{2\pi} \int_0^{2\pi} \log\,\abs{f\p{2Re^{i\theta}}} \,\diff\theta
&= \log\,\abs{f\p{0}} + \sum_{\abs{a_n} < 2R} \log\,\abs{\frac{2R}{a_n}} \\
&\geq \log\,\abs{f\p{0}} + \sum_{\abs{a_n} < R} \log\,\abs{\frac{2R}{R}} \\
&\geq \log\,\abs{f\p{0}} + N\p{R} \log{2}.
\end{aligned} 2 π 1 ∫ 0 2 π log ∣ ∣ f ( 2 R e i θ ) ∣ ∣ d θ = log ∣ f ( 0 ) ∣ + ∣ a n ∣ < 2 R ∑ log ∣ ∣ a n 2 R ∣ ∣ ≥ log ∣ f ( 0 ) ∣ + ∣ a n ∣ < R ∑ log ∣ ∣ R 2 R ∣ ∣ ≥ log ∣ f ( 0 ) ∣ + N ( R ) log 2 .
Thus, applying the estimate on f f f ,
log ∣ f ( 0 ) ∣ + N ( R ) log 2 ≤ 1 2 π ∫ 0 2 π log C e ( 2 R ) λ d θ = log C + ( 2 R ) λ ⟹ N ( R ) ≤ ( 2 R ) λ + log C − log ∣ f ( 0 ) ∣ log 2 ≤ A ( 2 R ) λ \begin{aligned}
\log\,\abs{f\p{0}} + N\p{R} \log{2}
&\leq \frac{1}{2\pi} \int_0^{2\pi} \log{Ce^{\p{2R}^\lambda}} \,\diff\theta \\
&= \log{C} + \p{2R}^\lambda \\
\implies
N\p{R}
&\leq \frac{\p{2R}^\lambda + \log{C} - \log\,\abs{f\p{0}}}{\log{2}} \\
&\leq A\p{2R}^\lambda
\end{aligned} log ∣ f ( 0 ) ∣ + N ( R ) log 2 ⟹ N ( R ) ≤ 2 π 1 ∫ 0 2 π log C e ( 2 R ) λ d θ = log C + ( 2 R ) λ ≤ log 2 ( 2 R ) λ + log C − log ∣ f ( 0 ) ∣ ≤ A ( 2 R ) λ
for R R R large enough, say, for R ≥ 2 N R \geq 2^N R ≥ 2 N where N ∈ N N \in \N N ∈ N . Next, observe that
∑ n 1 ∣ a n ∣ λ + ε = ∑ ∣ a n ∣ < 2 N 1 ∣ a n ∣ λ + ε + ∑ n = N ∞ ∑ 2 n ≤ ∣ a n ∣ < 2 n + 1 1 ∣ a n ∣ λ + ε . \sum_n \frac{1}{\abs{a_n}^{\lambda+\epsilon}}
= \sum_{\abs{a_n} < 2^N} \frac{1}{\abs{a_n}^{\lambda+\epsilon}} + \sum_{n=N}^\infty \sum_{2^n \leq \abs{a_n} < 2^{n+1}} \frac{1}{\abs{a_n}^{\lambda+\epsilon}}. n ∑ ∣ a n ∣ λ + ε 1 = ∣ a n ∣ < 2 N ∑ ∣ a n ∣ λ + ε 1 + n = N ∑ ∞ 2 n ≤ ∣ a n ∣ < 2 n + 1 ∑ ∣ a n ∣ λ + ε 1 .
Since f f f is entire and non-zero at the origin, there are only finitely many n n n such that ∣ a n ∣ < 2 N \abs{a_n} < 2^N ∣ a n ∣ < 2 N , so it remains to estimate the second term:
∑ n = N ∞ ∑ 2 n ≤ ∣ a n ∣ < 2 n + 1 1 ∣ a n ∣ λ + ε ≤ ∑ n = N ∞ ∑ 2 n ≤ ∣ a n ∣ < 2 n + 1 1 2 n ( λ + ε ) ≤ ∑ n = N ∞ N ( 2 n + 1 ) 2 n ( λ + ε ) ≤ ∑ n = N ∞ A ( 2 ⋅ 2 n + 1 ) λ 2 n ( λ + ε ) = A ⋅ 4 λ ∑ n = N ∞ 1 ( 2 ε ) n < ∞ , \begin{aligned}
\sum_{n=N}^\infty \sum_{2^n \leq \abs{a_n} < 2^{n+1}} \frac{1}{\abs{a_n}^{\lambda+\epsilon}}
&\leq \sum_{n=N}^\infty \sum_{2^n \leq \abs{a_n} < 2^{n+1}} \frac{1}{2^{n\p{\lambda+\epsilon}}} \\
&\leq \sum_{n=N}^\infty \frac{N\p{2^{n+1}}}{2^{n\p{\lambda+\epsilon}}} \\
&\leq \sum_{n=N}^\infty \frac{A\p{2 \cdot 2^{n+1}}^\lambda}{2^{n\p{\lambda+\epsilon}}} \\
&= A \cdot 4^\lambda \sum_{n=N}^\infty \frac{1}{\p{2^\epsilon}^n} \\
&< \infty,
\end{aligned} n = N ∑ ∞ 2 n ≤ ∣ a n ∣ < 2 n + 1 ∑ ∣ a n ∣ λ + ε 1 ≤ n = N ∑ ∞ 2 n ≤ ∣ a n ∣ < 2 n + 1 ∑ 2 n ( λ + ε ) 1 ≤ n = N ∑ ∞ 2 n ( λ + ε ) N ( 2 n + 1 ) ≤ n = N ∑ ∞ 2 n ( λ + ε ) A ( 2 ⋅ 2 n + 1 ) λ = A ⋅ 4 λ n = N ∑ ∞ ( 2 ε ) n 1 < ∞ ,
since ε > 0 ⟹ 2 ε > 1 \epsilon > 0 \implies 2^\epsilon > 1 ε > 0 ⟹ 2 ε > 1 , and this completes the proof.