Spring 2017 - Problem 9

Jensen's formula

Let f(z)f\p{z} be an analytic function in the entire complex plane C\C and assume with f(0)0f\p{0} \neq 0. Let {an}n\set{a_n}_n be the zeros of ff, repeated according to their multiplicities.

  1. Let R>0R > 0 be such that f(z)>0\abs{f\p{z}} > 0 on z=R\abs{z} = R. Prove

    12π02πlogf(Reiθ)dθ=logf(0)+an<RlogRan.\frac{1}{2\pi} \int_0^{2\pi} \log\,\abs{f\p{Re^{i\theta}}} \,\diff\theta = \log\,\abs{f\p{0}} + \sum_{\abs{a_n} < R} \log{\frac{R}{\abs{a_n}}}.
  2. Prove that if there are constants CC and λ\lambda such that f(z)Cezλ\abs{f\p{z}} \leq Ce^{\abs{z}^\lambda} for all zz, then

    1anλ+ε<\sum \frac{1}{\abs{a_n}^{\lambda + \epsilon}} < \infty

    for all ε>0\epsilon > 0.

    Hint: Estimate #{nan<R}\#\set{n \mid \abs{a_n} < R} using (1) on z2R\abs{z} \sim 2R.

Solution.
  1. Let R>0R > 0 be as in the problem statement. Observe that f(Rz)f\p{Rz} has roots anR\frac{a_n}{R} for an<R\abs{a_n} < R, so let

    g(z)=an<Rz(an/R)1(an/R)zg\p{z} = \prod_{\abs{a_n} < R} \frac{z - \p{a_n/R}}{1 - \p{\conj{a_n}/R}z}

    be the associated Blaschke product. gg is a product of automorphisms of the disk, hence holomorphic, and it has the exact same zeroes as f(Rz)f\p{Rz} with the same multiplicities. Moreover, since Blaschke factors have norm 11 whenever z=1\abs{z} = 1, we have g(z)=1\abs{g\p{z}} = 1 on D\partial\D. Thus, f(Rz)g(z)\frac{f\p{Rz}}{g\p{z}} is a holomorphic function which does not vanish on D\cl{\D}, which means that logf(Rz)g(z)\log\,\abs{\frac{f\p{Rz}}{g\p{z}}} is harmonic as the real part of a logarithm. Hence, by the mean value property,

    12π02πlogf(Reiθ)dθ=12π02πlogf(Reiθ)g(eiθ)dθ=logf(0)g(0)=logf(0)an<RloganR=logf(0)+an<RlogRan.\begin{aligned} \frac{1}{2\pi} \int_0^{2\pi} \log\,\abs{f\p{Re^{i\theta}}} \,\diff\theta &= \frac{1}{2\pi} \int_0^{2\pi} \log\,\abs{\frac{f\p{Re^{i\theta}}}{g\p{e^{i\theta}}}} \,\diff\theta \\ &= \log\,\abs{\frac{f\p{0}}{g\p{0}}} \\ &= \log\,\abs{f\p{0}} - \sum_{\abs{a_n} < R} \log\,\abs{\frac{a_n}{R}} \\ &= \log\,\abs{f\p{0}} + \sum_{\abs{a_n} < R} \log\,\abs{\frac{R}{a_n}}. \end{aligned}
  2. Let N(R)={nan<R}N\p{R} = \set{n \mid \abs{a_n} < R}. Then

    12π02πlogf(2Reiθ)dθ=logf(0)+an<2Rlog2Ranlogf(0)+an<Rlog2RRlogf(0)+N(R)log2.\begin{aligned} \frac{1}{2\pi} \int_0^{2\pi} \log\,\abs{f\p{2Re^{i\theta}}} \,\diff\theta &= \log\,\abs{f\p{0}} + \sum_{\abs{a_n} < 2R} \log\,\abs{\frac{2R}{a_n}} \\ &\geq \log\,\abs{f\p{0}} + \sum_{\abs{a_n} < R} \log\,\abs{\frac{2R}{R}} \\ &\geq \log\,\abs{f\p{0}} + N\p{R} \log{2}. \end{aligned}

    Thus, applying the estimate on ff,

    logf(0)+N(R)log212π02πlogCe(2R)λdθ=logC+(2R)λ    N(R)(2R)λ+logClogf(0)log2A(2R)λ\begin{aligned} \log\,\abs{f\p{0}} + N\p{R} \log{2} &\leq \frac{1}{2\pi} \int_0^{2\pi} \log{Ce^{\p{2R}^\lambda}} \,\diff\theta \\ &= \log{C} + \p{2R}^\lambda \\ \implies N\p{R} &\leq \frac{\p{2R}^\lambda + \log{C} - \log\,\abs{f\p{0}}}{\log{2}} \\ &\leq A\p{2R}^\lambda \end{aligned}

    for RR large enough, say, for R2NR \geq 2^N where NNN \in \N. Next, observe that

    n1anλ+ε=an<2N1anλ+ε+n=N2nan<2n+11anλ+ε.\sum_n \frac{1}{\abs{a_n}^{\lambda+\epsilon}} = \sum_{\abs{a_n} < 2^N} \frac{1}{\abs{a_n}^{\lambda+\epsilon}} + \sum_{n=N}^\infty \sum_{2^n \leq \abs{a_n} < 2^{n+1}} \frac{1}{\abs{a_n}^{\lambda+\epsilon}}.

    Since ff is entire and non-zero at the origin, there are only finitely many nn such that an<2N\abs{a_n} < 2^N, so it remains to estimate the second term:

    n=N2nan<2n+11anλ+εn=N2nan<2n+112n(λ+ε)n=NN(2n+1)2n(λ+ε)n=NA(22n+1)λ2n(λ+ε)=A4λn=N1(2ε)n<,\begin{aligned} \sum_{n=N}^\infty \sum_{2^n \leq \abs{a_n} < 2^{n+1}} \frac{1}{\abs{a_n}^{\lambda+\epsilon}} &\leq \sum_{n=N}^\infty \sum_{2^n \leq \abs{a_n} < 2^{n+1}} \frac{1}{2^{n\p{\lambda+\epsilon}}} \\ &\leq \sum_{n=N}^\infty \frac{N\p{2^{n+1}}}{2^{n\p{\lambda+\epsilon}}} \\ &\leq \sum_{n=N}^\infty \frac{A\p{2 \cdot 2^{n+1}}^\lambda}{2^{n\p{\lambda+\epsilon}}} \\ &= A \cdot 4^\lambda \sum_{n=N}^\infty \frac{1}{\p{2^\epsilon}^n} \\ &< \infty, \end{aligned}

    since ε>0    2ε>1\epsilon > 0 \implies 2^\epsilon > 1, and this completes the proof.