Spring 2017 - Problem 5

density argument, Lebesgue-Radon-Nikodym derivative

Let dμ\diff\mu be a finite complex Borel measure on [0,1]\br{0, 1} such that

μ^(n)=01e2πinxdμ(x)0asn.\hat{\mu}\p{n} = \int_0^1 e^{2\pi inx} \,\diff\mu\p{x} \to 0 \quad\text{as}\quad n \to \infty.

Let dν\diff\nu be a finite complex Borel measure on [0,1]\br{0, 1} that is absolutely continuous with respect to dμ\diff\mu. Show that

ν^(n)0asn.\hat{\nu}\p{n} \to 0 \quad\text{as}\quad n \to \infty.
Solution.

Let ε>0\epsilon > 0.

Since we are working with finite measures on a compact metric space, continuous functions are dense in L1L^1.

By the Lebesgue-Radon-Nikodym theorem, there exists fL1([0,1])f \in L^1\p{\br{0,1}} such that dν=fdμ\diff\nu = f \,\diff\mu. By Stone-Weierstrass, trigonometric polynomials are dense in L1([0,1])L^1\p{\br{0,1}}, so pick g(x)=k=1Nake2πikxg\p{x} = \sum_{k=1}^N a_k e^{2\pi ikx} such that fgL1<ε\norm{f - g}_{L^1} < \epsilon.

ν^(n)=01e2πinxdν(x)=01e2πinxf(x)dμ(x)=01e2πinx(f(x)g(x))dμ(x)+01e2πinxg(x)dμ(x)01f(x)g(x)dμ(x)+k=1Nak01e2πinxe2πikxdμ(x)=fgL1+k=1Nakμ^(k+n).\begin{aligned} \abs{\hat{\nu}\p{n}} &= \abs{\int_0^1 e^{2\pi inx} \,\diff\nu\p{x}} \\ &= \abs{\int_0^1 e^{2\pi inx}f\p{x} \,\diff\mu\p{x}} \\ &= \abs{\int_0^1 e^{2\pi inx}\p{f\p{x} - g\p{x}} \,\diff\mu\p{x} + \int_0^1 e^{2\pi inx} g\p{x} \,\diff\mu\p{x}} \\ &\leq \int_0^1 \abs{f\p{x} - g\p{x}} \,\diff\mu\p{x} + \sum_{k=1}^N \abs{a_k \int_0^1 e^{2\pi inx} e^{2\pi ikx} \,\diff\mu\p{x}} \\ &= \norm{f - g}_{L^1} + \sum_{k=1}^N \abs{a_k} \abs{\hat{\mu}\p{k+n}}. \end{aligned}

Sending nn \to \infty and applying the assumption, we get

lim supnν^(n)ε.\limsup_{n\to\infty}\,\abs{\hat{\nu}\p{n}} \leq \epsilon.

Sending ε0\epsilon \to 0, we get the claim.