Spring 2017 - Problem 4

construction

For n1n \geq 1, let an ⁣:[0,1){0,1}\func{a_n}{\pco{0,1}}{\set{0,1}} denote the nn-th digit in the binary expansion of xx, so that

x=n1an(x)2nfor all x[0,1).x = \sum_{n \geq 1} a_n\p{x} 2^{-n} \quad\text{for all } x \in \pco{0, 1}.

(We remove any ambiguity from this definition by requiring that lim infnan(x)=0\liminf_{n\to\infty} a_n\p{x} = 0 for all x[0,1)x \in \pco{0, 1}.) Let M([0,1))M\p{\pco{0,1}} denote the Banach space of finite complex Borel measures on [0,1)\pco{0, 1} and define linear functions LnL_n on M([0,1))M\p{\pco{0,1}} via

Ln(μ)=01an(x)dμ(x).L_n\p{\mu} = \int_0^1 a_n\p{x} \,\diff\mu\p{x}.

Show that no subsequence of the sequence LnL_n converges in the weak-* topology on (M([0,1)))\p{M\p{\pco{0,1}}}^*.

Solution.

Let {Lnk}k\set{L_{n_k}}_k be a subsequence. If xx is as given in the problem, consider the Dirac measure δx\delta_x, which gives Lnk(δx)=ank(x)L_{n_k}\p{\delta_x} = a_{n_k}\p{x}. Thus, if we have ank(x)a_{n_k}\p{x} alternate in kk, then this sequence does not converge. More concretely, let

x=k=1(1+(1)k)2nkx = \sum_{k=1}^\infty \p{1 + \p{-1}^k}2^{-n_k}

and so Lnk(δx)=1+(1)kL_{n_k}\p{\delta_x} = 1 + \p{-1}^k, which does not converge.