Spring 2017 - Problem 1

Lp spaces

Let KRK \subseteq \R be a compact set of positive measure and let fL(R)f \in L^\infty\p{\R}. Show that the function

F(x)=1KKf(x+t)dtF\p{x} = \frac{1}{\abs{K}} \int_K f\p{x + t} \,\diff{t}

is uniformly continuous on R\R. Here K\abs{K} denotes the Lebesgue measure of KK.

Solution.

By the change of variables tx+tt \mapsto x + t, we can write

F(x)=1m(K)x+Kf(t)dt=1m(K)Rf(t)χx+K(t)dt=1m(K)Rf(t)χK(tx)dt.F\p{x} = \frac{1}{m\p{K}} \int_{x + K} f\p{t} \,\diff{t} = \frac{1}{m\p{K}} \int_\R f\p{t}\chi_{x + K}\p{t} \,\diff{t} = \frac{1}{m\p{K}} \int_\R f\p{t}\chi_K\p{t - x} \,\diff{t}.

Fix ε>0\epsilon > 0. Then given x,yRx, y \in \R,

F(x)F(y)1m(K)Rf(t)χK(tx)χK(ty)dt=fLm(K)RχK(t)χK(t+(xy))dt(ttx)=fLm(K)χKτxyχKL1,\begin{aligned} \abs{F\p{x} - F\p{y}} &\leq \frac{1}{m\p{K}} \int_\R \abs{f\p{t}}\abs{\chi_K\p{t - x} - \chi_K\p{t - y}} \,\diff{t} \\ &= \frac{\norm{f}_{L^\infty}}{m\p{K}} \int_\R \abs{\chi_K\p{t} - \chi_K\p{t + \p{x - y}}} \,\diff{t} && (t \mapsto t - x) \\ &= \frac{\norm{f}_{L^\infty}}{m\p{K}} \norm{\chi_K - \tau_{x-y}\chi_K}_{L^1}, \end{aligned}

where τxyg(t)=g(t+(xy))\tau_{x-y}g\p{t} = g\p{t + \p{x-y}} in the translation operator. However, we know that translation is continuous in L1L^1, so there exists δ>0\delta > 0 such that if xy<δ\abs{x - y} < \delta, then χKτxyχKL1<ε\norm{\chi_K - \tau_{x-y}\chi_K}_{L^1} < \epsilon. This only depends on xy\abs{x - y} and not xx and yy themselves, and so FF is uniformly continuous on R\R.