Fall 2017 - Problem 9

entire functions

Consider a map F ⁣:C×CC\func{F}{\C \times \C}{\C} with the following properties:

  1. For each fixed zCz \in \C the map wF(z,w)w \mapsto F\p{z, w} is injective.
  2. For each fixed wCw \in \C the map zF(z,w)z \mapsto F\p{z, w} is holomorphic.
  3. F(0,w)=wF\p{0, w} = w for wCw \in \C.

Show that then

F(z,w)=a(z)w+b(z)F\p{z, w} = a\p{z}w + b\p{z}

for z,wCz, w \in \C, where aa and bb are entire functions with a(0)=1a\p{0} = 1, b(0)=0b\p{0} = 0, and a(z)0a\p{z} \neq 0 for zCz \in \C.

Hint: Consider F(z,w)F(z,0)F(z,1)F(z,0)\frac{F\p{z, w} - F\p{z, 0}}{F\p{z, 1} - F\p{z, 0}}.

Solution.

Let G(z,w)=F(z,w)F(z,0)F(z,1)F(z,0)G\p{z, w} = \frac{F\p{z, w} - F\p{z, 0}}{F\p{z, 1} - F\p{z, 0}}. By injectivity, F(z,1)F(z,0)0F\p{z, 1} - F\p{z, 0} \neq 0 for any zCz \in \C, so zG(z,w)z \mapsto G\p{z, w} is entire.

Notice that G(z,0)=0G\p{z, 0} = 0 and G(z,1)=1G\p{z, 1} = 1. If w1,2w \neq 1, 2, then by injectivity, F(z,w)F(z,0)F\p{z, w} \neq F\p{z, 0} and F(z,w)F(z,1)F\p{z, w} \neq F\p{z, 1}, so G(z,w)G\p{z, w} misses 00 and 11. By Picard's little theorem, zG(z,w)z \mapsto G\p{z, w} is constant. In all cases, zG(z,w)z \mapsto G\p{z, w} is constant, so

G(z,w)=G(0,w)=F(0,w)F(0,0)F(0,1)F(0,0)=w.G\p{z, w} = G\p{0, w} = \frac{F\p{0, w} - F\p{0, 0}}{F\p{0, 1} - F\p{0, 0}} = w.

Thus,

w=F(z,w)F(z,0)F(z,1)F(z,0)    F(z,w)=(F(z,1)F(z,0))w+F(z,0).w = \frac{F\p{z, w} - F\p{z, 0}}{F\p{z, 1} - F\p{z, 0}} \implies F\p{z, w} = \p{F\p{z, 1} - F\p{z, 0}}w + F\p{z, 0}.

If we set a(z)=F(z,1)F(z,0)a\p{z} = F\p{z, 1} - F\p{z, 0} and b(z)=F(z,0)b\p{z} = F\p{z, 0}, then a(0)=0a\p{0} = 0, b(0)=0b\p{0} = 0, and by injectivity, a(z)0a\p{z} \neq 0, which completes the proof.