Fall 2017 - Problem 6

Lp spaces, Minkowski's inequality

Let fL2(C)f \in L^2\p{\C}. For zCz \in \C we define

g(z)={wCwz1}f(w)wzdA(w),g\p{z} = \int_{\set{w \in \C \mid \abs{w - z} \leq 1}} \frac{\abs{f\p{w}}}{\abs{w - z}} \,\diff{A\p{w}},

where dA\diff{A} denotes integration with respect to Lebesgue measure on CR2\C \simeq \R^2. Show that then g(z)<\abs{g\p{z}} < \infty for almost every zCz \in \C and that gL2(C)g \in L^2\p{\C}.

Solution.

First, by a change of variables,

g(z)=0102πrf(z+reiθ)rdθdr=0102πf(z+reiθ)dθdr.g\p{z} = \int_0^1 \int_0^{2\pi} r \frac{\abs{f\p{z + re^{i\theta}}}}{r} \,\diff\theta \,\diff{r} = \int_0^1 \int_0^{2\pi} \abs{f\p{z + re^{i\theta}}} \,\diff\theta \,\diff{r}.

By Minkowski's inequality

(Cg(z)2dA(z))1/2=(C(0102πf(z+reiθ)dθdr)2dA(z))1/20102π(Cf(z+reiθ)2dA(z))1/2dθdr=0102πfL2dθdr=2πfL2<.\begin{aligned} \p{\int_\C \abs{g\p{z}}^2 \,\diff{A\p{z}}}^{1/2} &= \p{\int_\C \p{\int_0^1 \int_0^{2\pi} \abs{f\p{z + re^{i\theta}}} \,\diff\theta \,\diff{r}}^2 \,\diff{A}\p{z}}^{1/2} \\ &\leq \int_0^1 \int_0^{2\pi} \p{\int_\C \abs{f\p{z + re^{i\theta}}}^2 \,\diff{A\p{z}}}^{1/2} \,\diff\theta \,\diff{r} \\ &= \int_0^1 \int_0^{2\pi} \norm{f}_{L^2} \,\diff\theta \,\diff{r} \\ &= 2\pi \norm{f}_{L^2} \\ &< \infty. \end{aligned}

Thus, gL2(C)g \in L^2\p{\C} and g(z)2<\abs{g\p{z}}^2 < \infty almost everywhere, which implies g(z)<\abs{g\p{z}} < \infty almost everywhere as well.