Fall 2017 - Problem 4

construction

Consider the Banach space V=C([1,1])V = C\p{\br{-1, 1}} of all real-valued continuous functions on [1,1]\br{-1, 1} equipped with the supremum norm defined as

f=sup{f(x)x[1,1]}for fV.\norm{f} = \sup\,\set{\abs{f\p{x}} \mid x \in \br{-1, 1}} \quad\text{for } f \in V.

Let B={fVf1}B = \set{f \in V \mid \norm{f} \leq 1} be the closed unit ball in VV.

Show that there exists a bounded linear functional Λ ⁣:VR\func{\Lambda}{V}{\R} such that Λ(B)\Lambda\p{B} is an open subset of R\R.

Solution.

Define

Λ(f)=01fdx10fdx,\Lambda\p{f} = \int_0^1 f \,\diff{x} - \int_{-1}^0 f \,\diff{x},

i.e., Λ\Lambda is integration against the step function φ(x)=1\phi\p{x} = -1 on [1,0)\pco{-1, 0} and φ(x)=1\phi\p{x} = 1 on (0,1]\poc{0, 1}. Then for fBf \in B,

Λ(f)01fdx+10fdx=2.\abs{\Lambda\p{f}} \leq \int_0^1 \norm{f} \,\diff{x} + \int_{-1}^0 \norm{f} \,\diff{x} = 2.

Since BB is connected (it is path-connected via the convex homotopy) and λ\lambda is continuous, so λ(B)\lambda\p{B} is connected, i.e., an interval. For ε>0\epsilon > 0, let

f(x)={1if 1xεxεif εxε1if εx1.f\p{x} = \begin{cases} -1 & \text{if } -1 \leq x \leq -\epsilon \\ \frac{x}{\epsilon} & \text{if } -\epsilon \leq x \leq \epsilon \\ 1 & \text{if } \epsilon \leq x \leq 1. \end{cases}

Then ff is piecewise linear, hence continuous, and f=1\norm{f} = 1. Also, we have

Λ(f)=1εdxε0xεdx+0εxεdx+ε1dx=1ε+ε2+ε2+1ε=2ε.\begin{aligned} \Lambda\p{f} &= \int_{-1}^{-\epsilon} \,\diff{x} - \int_{-\epsilon}^0 \frac{x}{\epsilon} \,\diff{x} + \int_0^\epsilon \frac{x}{\epsilon} \,\diff{x} + \int_\epsilon^1 \,\diff{x} \\ &= 1 - \epsilon + \frac{\epsilon}{2} + \frac{\epsilon}{2} + 1 - \epsilon \\ &= 2 - \epsilon. \end{aligned}

Replacing ff with f-f, we see that infBΛ=2\inf_B \Lambda = -2 and supBΛ=2\sup_B \Lambda = 2, so it remains to show that Λ\Lambda does not attain a maximum or minimum on BB.

Suppose Λ(f)=2\Lambda\p{f} = 2. Then f(x)=1f\p{x} = 1 on (0,1]\poc{0, 1}. Otherwise, if there exists x0(0,1]x_0 \in \poc{0, 1} such that f(x0)<1f\p{x_0} < 1, then f(x)1ε<1f\p{x} \leq 1 - \epsilon < 1 on an interval II of length δ>0\delta > 0 on (0,1]\poc{0, 1}, by continuity. Then

Λ(f)=Ifdx+[0,1]Ifdx10fdxIfdx+[0,1]Ifdx+10dx(1ε)δ+1δ+1=2εδ<2.\begin{aligned} \Lambda\p{f} &= \int_I f \,\diff{x} + \int_{\br{0,1} \setminus I} f \,\diff{x} - \int_{-1}^0 f \,\diff{x} \\ &\leq \int_I f \,\diff{x} + \int_{\br{0,1} \setminus I} f \,\diff{x} + \int_{-1}^0 \,\diff{x} \\ &\leq \p{1 - \epsilon}\delta + 1 - \delta + 1 \\ &= 2 - \epsilon\delta \\ &< 2. \end{aligned}

By symmetry, we need f(x)=1f\p{x} = -1 on [1,0)\pco{-1, 0}, but this is impossible, as no value of f(0)f\p{0} we take, ff cannot be continuous. Thus, ff does not attain its maximum, and by a similar argument, ff does not attain its minimum. Hence, Λ(B)=(2,2)\Lambda\p{B} = \p{-2, 2}, an open set.