Fall 2017 - Problem 3

density argument, measure theory

Let {μn}\set{\mu_n} denote a sequence of Borel probability measures on R\R. For nNn \in \N and xRx \in \R we define

Fn(x)=μn((,x]).F_n\p{x} = \mu_n\p{\poc{-\infty, x}}.

Suppose the sequence {Fn}n\set{F_n}_n converges uniformly on R\R. Show that then for every bounded continuous function f ⁣:RR\func{f}{\R}{\R} the numbers

Rf(x)dμn(x)\int_\R f\p{x} \,\diff\mu_n\p{x}

converge as nn \to \infty.

Solution.

First, let f=k=1Nckχ(ak,bk]f = \sum_{k=1}^N c_k \chi_{\poc{a_k,b_k}}, where akbk-\infty \leq a_k \leq b_k \leq \infty and the (ak,bk]\poc{a_k, b_k} are pairwise disjoint. Then

fdμnfdμm=k=1N(ck(Fn(bk)Fn(ak))ck(Fm(bk)Fm(ak)))k=1Nck(Fn(bk)Fm(bk)+Fn(ak)Fm(ak)).\begin{aligned} \abs{\int f \,\diff\mu_n - \int f \,\diff\mu_m} &= \abs{\sum_{k=1}^N \p{c_k\p{F_n\p{b_k} - F_n\p{a_k}} - c_k\p{F_m\p{b_k} - F_m\p{a_k}}}} \\ &\leq \sum_{k=1}^N \abs{c_k} \p{\abs{F_n\p{b_k} - F_m\p{b_k}} + \abs{F_n\p{a_k} - F_m\p{a_k}}}. \end{aligned}

Since {Fn}n\set{F_n}_n converges uniformly, it is uniformly Cauchy, so this quantity tends to 00 as n,mn, m \to \infty. This proves the result for simple functions.

Since {Fn}n\set{F_n}_n is uniformly Cauchy, there exists NNN \in \N such that if n,mNn, m \geq N, then Fn(x)Fm(x)<ε\abs{F_n\p{x} - F_m\p{x}} < \epsilon for any xRx \in \R. Since μN\mu_N is a finite measure, we can apply downward continuity to get R>0R > 0 such that FN(R)=μN(,R)<εF_N\p{-R} = \mu_N\p{-\infty, -R} < \epsilon. Thus, for nNn \geq N,

Fn(R)FN(R)Fn(R)+FN(R)2ε.\abs{F_n\p{-R}} \leq \abs{F_N\p{-R} - F_n\p{-R}} + \abs{F_N\p{-R}} \leq 2\epsilon.

By applying the same argument to 1Fn(x)1 - F_n\p{x} and making RR larger if necessary, we see that

μn((,R](R,))<ε\mu_n\p{\poc{-\infty, -R} \cup \p{R, \infty}} < \epsilon

for nNn \geq N.

Let ff be a bounded continuous function and ε>0\epsilon > 0. Since ff is bounded, we know that ff can be approximated uniformly by simple functions (regardless of sign of ff) on compact sets, so let gg be a simple function such that fgL(B(0,R))<ε\norm{f - g}_{L^\infty\p{B\p{0,R}}} < \epsilon.

Making NN larger if necessary, we may assume that if n,mNn, m \geq N, then gdμngdμm<ε\abs{\int g \,\diff\mu_n - \int g \,\diff\mu_m} < \epsilon. Hence, if MM is an upper bound for ff,

fdμnfdμmB(0,R)fdμnB(0,R)gdμn+B(0,R)fdμmB(0,R)gdμm+B(0,R)gdμnB(0,R)gdμm+B(0,R)cfdμnB(0,R)cfdμmεμn(R)+εμm(R)+ε+Mμn(B(0,R)c)+Mμm(B(0,R)c)3ε+2Mε.\begin{aligned} \abs{\int f \,\diff\mu_n - \int f \,\diff\mu_m} &\leq \abs{\int_{B\p{0,R}} f \,\diff\mu_n - \int_{B\p{0,R}} g \,\diff\mu_n} + \abs{\int_{B\p{0,R}} f \,\diff\mu_m - \int_{B\p{0,R}} g \,\diff\mu_m} + \abs{\int_{B\p{0,R}} g \,\diff\mu_n - \int_{B\p{0,R}} g \,\diff\mu_m} + \abs{\int_{B\p{0,R}^\comp} f \,\diff\mu_n - \int_{B\p{0,R}^\comp} f \,\diff\mu_m} \\ &\leq \epsilon \mu_n\p{\R} + \epsilon \mu_m\p{\R} + \epsilon + M\mu_n\p{B\p{0,R}^\comp} + M\mu_m\p{B\p{0,R}^\comp} \\ &\leq 3\epsilon + 2M\epsilon. \end{aligned}

Sending ε0\epsilon \to 0, we get the claim.