Fall 2017 - Problem 2

Lp spaces

Let {fn}n\set{f_n}_n denote a bounded sequence in L2([0,1])L^2\p{\br{0,1}}. Suppose the sequence {fn}n\set{f_n}_n also converges almost everywhere. Show that then {fn}n\set{f_n}_n converges in the weak topology on L2([0,1])L^2\p{\br{0,1}}.

Solution.

Let gL2([0,1])g \in L^2\p{\br{0,1}}. We will show that

(fnf)gdxfnfgdxn0.\abs{\int \p{f_n - f}g \,\diff{x}} \leq \int \abs{f_n - f}\abs{g} \,\diff{x} \xrightarrow{n\to\infty} 0.

Let M=supnfnL2M = \sup_n \norm{f_n}_{L^2}. By Fatou's lemma, if ff denotes the pointwise limit of {fn}n\set{f_n}_n, then

f2dxlim infnfn2dxM,\int \abs{f}^2 \,\diff{x} \leq \liminf_{n\to\infty} \int \abs{f_n}^2 \,\diff{x} \leq M,

so fL2f \in L^2.

Let ε>0\epsilon > 0. Since gL2([0,1])g \in L^2\p{\br{0,1}}, there exists R>0R > 0 such that gχB(0,R)cL2<ε\norm{g\chi_{B\p{0,R}^\comp}}_{L^2} < \epsilon. Also, the map EEg2dxE \mapsto \int_E \abs{g}^2 \,\diff{x} defines a measure absolutely continuous with respect to the Lebesgue measure, so there exists δ>0\delta > 0 such that if m(E)<δm\p{E} < \delta, then Eg2dx<ε2\int_E \abs{g}^2 \,\diff{x} < \epsilon^2. For B(0,R)B\p{0, R}, let An={xB(0,R)fn(x)f(x)ε}A_n = \set{x \in B\p{0, R} \mid \abs{f_n\p{x} - f\p{x}} \geq \epsilon}. Since fnff_n \to f almost everywhere, fnff_n \to f in measure, so there exists NNN \in \N so that if nNn \geq N, then m(An)δm\p{A_n} \leq \delta. Thus, by Cauchy-Schwarz,

fnfgdx=B(0,R)cfnfgdx+Anfnfgdx+B(0,R)AnfnfgdxfnfL2gχB(0,R)cL2+fnfL2(Ang2dx)1/2+εB(0,R)Ang2dx2Mε+2Mε+εgL2.\begin{aligned} \int \abs{f_n - f}\abs{g} \,\diff{x} &= \int_{B\p{0,R}^\comp} \abs{f_n - f}\abs{g} \,\diff{x} + \int_{A_n} \abs{f_n - f}\abs{g} \,\diff{x} + \int_{B\p{0,R} \setminus A_n} \abs{f_n - f}\abs{g} \,\diff{x} \\ &\leq \norm{f_n - f}_{L^2} \norm{g\chi_{B\p{0,R}^\comp}}_{L^2} + \norm{f_n - f}_{L^2} \p{\int_{A_n} \abs{g}^2 \,\diff{x}}^{1/2} + \epsilon \int_{B\p{0,R} \setminus A_n} \abs{g}^2 \,\diff{x} \\ &\leq 2M\epsilon + 2M\epsilon + \epsilon \norm{g}_{L^2}. \end{aligned}

Sending ε0\epsilon \to 0, we get the claim.