Fall 2017 - Problem 11

inverse function theorem, Schwarz lemma

Let f ⁣:DC\func{f}{\D}{\C} be an injective and holomorphic function with f(0)=0f\p{0} = 0 and f(0)=1f'\p{0} = 1. Show that then

inf{wwf(D)}1\inf\,\set{\abs{w} \mid w \notin f\p{\D}} \leq 1

with equality if and only if f(z)=zf\p{z} = z for all zDz \in \D.

Solution.

Suppose inf{wwf(D)}=1+ε>1\inf\,\set{\abs{w} \mid w \notin f\p{\D}} = 1 + \epsilon > 1 for some ε>0\epsilon > 0. Equivalently, f(D)c{w1+ε}f\p{\D}^\comp \subseteq \set{\abs{w} \geq 1 + \epsilon} so taking complements, f(D){w<1+ε}=B(0,1+ε)f\p{\D} \supseteq \set{\abs{w} < 1 + \epsilon} = B\p{0, 1 + \epsilon}.

Let U=f1(B(0,1+ε))DU = f^{-1}\p{B\p{0, 1 + \epsilon}} \subseteq \D, which is open since ff is continuous. Because ff is injective, ff restricts to a biholomorphism g1=fU ⁣:UB(0,1+ε)g^{-1} = \func{\res{f}{U}}{U}{B\p{0, 1 + \epsilon}}, so g ⁣:B(0,1+ε)D\func{g}{B\p{0, 1 + \epsilon}}{\D} with g(0)=0g\p{0} = 0. Applying the Schwarz lemma to g((1+ε)z)g\p{\p{1 + \epsilon}z}, we get g(z)z1+ε\abs{g\p{z}} \leq \frac{\abs{z}}{1 + \epsilon} for zB(0,1+ε)z \in B\p{0, 1 + \epsilon}. Thus, for zUz \in U, f(z)B(0,1+ε)f\p{z} \in B\p{0, 1 + \epsilon} and so we may apply the inequality:

z=(gf)(z)f(z)1+ε    f(z)(1+ε)z.\abs{z} = \abs{\p{g \circ f}\p{z}} \leq \frac{\abs{f\p{z}}}{1 + \epsilon} \implies \abs{f\p{z}} \geq \p{1 + \epsilon}\abs{z}.

But 0U0 \in U, so for zz close enough to 00,

1+εf(z)zz0f(0)=1,1 + \epsilon \leq \abs{\frac{f\p{z}}{z}} \xrightarrow{z\to0} \abs{f'\p{0}} = 1,

a contradiction. Thus, inf{wwf(D)}1\inf\,\set{\abs{w} \mid w \notin f\p{\D}} \leq 1 to begin with.

To prove the second claim, first, if f(z)=zf\p{z} = z, then f(D)=Df\p{\D} = \D, so d(f(D)c,0)=1d\p{f\p{\D}^\comp, 0} = 1 and we have equality. Conversely, suppose we had equality, which means

f(D)c{w1}    f(D){w<1}=Df\p{\D}^\comp \subseteq \set{\abs{w} \geq 1} \implies f\p{\D} \supseteq \set{\abs{w} < 1} = \D

As before, let U=f1(D)U = f^{-1}\p{\D} and let g ⁣:DUD\func{g}{\D}{U \subseteq \D} be the holomorphic inverse of ff restricted to UU.

1=(fg)(0)=f(g(0))g(0)=f(0)g(0)=g(0),1 = \p{f \circ g}'\p{0} = f'\p{g\p{0}}g'\p{0} = f'\p{0}g'\p{0} = g'\p{0},

so by the Schwarz lemma, g(z)=zg\p{z} = z and so f(z)=zf\p{z} = z as well, which completes the proof.