Fall 2017 - Problem 10

Harnack's inequality, subharmonic functions

Let {fn}n\set{f_n}_n be a sequence of holomorphic functions on D\D with the property that

F(z)=n=1fn(z)21F\p{z} = \sum_{n=1}^\infty \abs{f_n\p{z}}^2 \leq 1

for all zDz \in \D. Show that the series defining F(z)F\p{z} converges uniformly on compact subsets of D\D and that FF is subharmonic.

Solution.

Given B(z,r)DB\p{z, r} \subseteq \D, we have by Cauchy-Schwarz

fn(z)2=12π02πfn(z+reiθ)dθ214π2(02πfn(z+reiθ)2dθ)(02πdθ)=12π02πfn(z+reiθ)2dθ,\begin{aligned} \abs{f_n\p{z}}^2 &= \abs{\frac{1}{2\pi} \int_0^{2\pi} f_n\p{z + re^{i\theta}} \,\diff\theta}^2 \\ &\leq \frac{1}{4\pi^2} \p{\int_0^{2\pi} \abs{f_n\p{z + re^{i\theta}}}^2 \,\diff\theta} \p{\int_0^{2\pi} \,\diff\theta} \\ &= \frac{1}{2\pi} \int_0^{2\pi} \abs{f_n\p{z + re^{i\theta}}}^2 \,\diff\theta, \end{aligned}

so fn2\abs{f_n}^2 satisfies the sub-mean value property. Since fn2\abs{f_n}^2 is continuous (fnf_n is holomorphic), it follows that fn2\abs{f_n}^2 is subharmonic. Thus, FF is the pointwise supremum of a family of subharmonic functions, so it is itself subharmonic.

It remains to show locally uniformly convergence. First, we will show that if uu is a continuous subharmonic function, then it satisfies a sub-Poisson representation formula on closed disks. Indeed, let B(z0,r)D\cl{B\p{z_0, r}} \subseteq \D and vv be the solution to the Dirichlet problem on B(z0,r)B\p{z_0, r} with boundary condition uu so that

v(z)u(z)=12π02πRe(reiθ+zz0reiθ(zz0))v(z0+reiθ)dθv\p{z} \leq u\p{z} = \frac{1}{2\pi} \int_0^{2\pi} \Re\p{\frac{re^{i\theta} + z - z_0}{re^{i\theta} - \p{z - z_0}}} v\p{z_0 + re^{i\theta}} \,\diff\theta

on B(z0,r)\partial B\p{z_0, r}. By subharmonicity, this implies that v(z)u(z)v\p{z} \leq u\p{z} on all of B(z0,r)B\p{z_0, r}, so we get the sub-Poisson representation formula.

Let K=B(0,R)K = \cl{B\p{0, R}} for 0<R<10 < R < 1 so that B(0,1+R2)D\cl{B\p{0, \frac{1 + R}{2}}} \subseteq \D as well. Let R=1+R2R' = \frac{1 + R}{2}. Then if zKz \in K,

v(z)12π02πRe(Reiθ+zReiθz)v(Reiθ)dθ=12π02πRz2Reiθz2v(Reiθ)dθ12π02π(R)2R(RR)2v(Reiθ)dθR+RRRv(0)MKv(0).\begin{aligned} v\p{z} &\leq \frac{1}{2\pi} \int_0^{2\pi} \Re\p{\frac{R'e^{i\theta} + z}{R'e^{i\theta} - z}} v\p{R'e^{i\theta}} \,\diff\theta \\ &= \frac{1}{2\pi} \int_0^{2\pi} \frac{R' - \abs{z}^2}{\abs{R'e^{i\theta} - z}^2} v\p{R'e^{i\theta}} \,\diff\theta \\ &\leq \frac{1}{2\pi} \int_0^{2\pi} \frac{\p{R'}^2 - R}{\p{R' - R}^2} v\p{R'e^{i\theta}} \,\diff\theta \\ &\leq \frac{R' + R}{R' - R} v\p{0} \\ &\eqqcolon M_K v\p{0}. \end{aligned}

for any non-negative subharmonic vv. If we let FN=n=1Nfn2F_N = \sum_{n=1}^N \abs{f_n}^2, then FNF_N is subharmonic as a sum of subharmonic functions. Thus, for NMN \leq M,

FM(z)FN(z)MKFM(0)FN(0),\abs{F_M\p{z} - F_N\p{z}} \leq M_K \abs{F_M\p{0} - F_N\p{0}},

so {FN}n\set{F_N}_n is uniformly Cauchy on KK, since the partial sums is Cauchy at 00. Hence, FF converges locally uniformly, as required.