Fourier analysis
For f∈C0∞(R2) define u(x,t) by
u(x,t)=∫R2eix⋅ξ∣ξ∣sin(t∣ξ∣)f(ξ)dξ,x∈R2, t>0.
Show that limt→∞∥u(⋅,t)∥L2=∞ for a set of f that is dense in L2(R2).
Solution.
Observe that u is defined as the inverse Fourier transform of
ξ↦∣ξ∣sin(t∣ξ∣)f(ξ).
Hence, by Plancherel,
∥u(⋅,t)∥L22=∥∥ξ↦∣ξ∣sin(t∣ξ∣)f(ξ)∥∥L22=∫R2(∣ξ∣sin(t∣ξ∣))2∣f(x)∣2dξ≥∫{0≤t∣ξ∣≤2π}(π∣ξ∣2t∣ξ∣)2∣f(ξ)∣2dξ=π24t2∫{∣ξ∣≤2tπ}∣f(ξ)∣2dξ.
Thus, if limξ→0∣f(ξ)∣=∞, then this tends to ∞. It remains to show that {f∈L2(R2)∣limξ→0∣(ξ)∣=∞} is dense in L2(R2).
Let φ(ξ)=∣ξ∣−1/2χB(0,1) so that
∥φ∥L22=∫B(0,1)∣ξ∣1dξ=∫01∫02πdθdr=2π.
Thus, given f∈Cc(R2) and ε>0,
ξ→0lim(f(ξ)+εφ(ξ))=∞and∥f−(f−εφ)∥L2=ε∥φ∥L2,
which completes the proof.