Spring 2016 - Problem 5

Fourier analysis

For fC0(R2)f \in C_0^\infty\p{\R^2} define u(x,t)u\p{x, t} by

u(x,t)=R2eixξsin(tξ)ξf(ξ)dξ,xR2, t>0.u\p{x, t} = \int_{\R^2} e^{ix \cdot \xi} \frac{\sin\p{t\abs{\xi}}}{\abs{\xi}} f\p{\xi} \,\diff{\xi}, \quad x \in \R^2,\ t > 0.

Show that limtu(,t)L2=\lim_{t\to\infty} \norm{u\p{\:\cdot\:, t}}_{L^2} = \infty for a set of ff that is dense in L2(R2)L^2\p{\R^2}.

Solution.

Observe that uu is defined as the inverse Fourier transform of

ξsin(tξ)ξf(ξ).\xi \mapsto \frac{\sin\p{t\abs{\xi}}}{\abs{\xi}} f\p{\xi}.

Hence, by Plancherel,

u(,t)L22=ξsin(tξ)ξf(ξ)L22=R2(sin(tξ)ξ)2f(x)2dξ{0tξπ2}(2tξπξ)2f(ξ)2dξ=4t2π2{ξπ2t}f(ξ)2dξ.\begin{aligned} \norm{u\p{\:\cdot\:, t}}_{L^2}^2 &= \norm{\xi \mapsto \frac{\sin\p{t\abs{\xi}}}{\abs{\xi}} f\p{\xi}}_{L^2}^2 \\ &= \int_{\R^2} \p{\frac{\sin\p{t\abs{\xi}}}{\abs{\xi}}}^2 \abs{f\p{x}}^2 \,\diff\xi \\ &\geq \int_{\set{0 \leq t\abs{\xi} \leq \frac{\pi}{2}}} \p{\frac{2t\abs{\xi}}{\pi\abs{\xi}}}^2 \abs{f\p{\xi}}^2 \,\diff\xi \\ &= \frac{4t^2}{\pi^2} \int_{\set{\abs{\xi} \leq \frac{\pi}{2t}}} \abs{f\p{\xi}}^2 \,\diff\xi. \end{aligned}

Thus, if limξ0f(ξ)=\lim_{\xi\to0} \abs{f\p{\xi}} = \infty, then this tends to \infty. It remains to show that {fL2(R2)limξ0(ξ)=}\set{f \in L^2\p{\R^2} \mid \lim_{\xi\to0} \abs{\p{\xi}} = \infty} is dense in L2(R2)L^2\p{\R^2}.

Let φ(ξ)=ξ1/2χB(0,1)\phi\p{\xi} = \abs{\xi}^{-1/2}\chi_{B\p{0,1}} so that

φL22=B(0,1)1ξdξ=0102πdθdr=2π.\norm{\phi}_{L^2}^2 = \int_{B\p{0,1}} \frac{1}{\abs{\xi}} \,\diff\xi = \int_0^1 \int_0^{2\pi} \diff\theta \,\diff{r} = 2\pi.

Thus, given fCc(R2)f \in C_c\p{\R^2} and ε>0\epsilon > 0,

limξ0(f(ξ)+εφ(ξ))=andf(fεφ)L2=εφL2,\lim_{\xi\to0}\,\p{f\p{\xi} + \epsilon\phi\p{\xi}} = \infty \quad\text{and}\quad \norm{f - \p{f - \epsilon\phi}}_{L^2} = \epsilon\norm{\phi}_{L^2},

which completes the proof.