Spring 2016 - Problem 2

Lp spaces

Let fL1(R)f \in L^1\p{\R}. Show that the series

n=11nf(xn)\sum_{n=1}^\infty \frac{1}{\sqrt{n}} f\p{x - \sqrt{n}}

converges absolutely for almost all xRx \in \R.

Solution.

Let kNk \in \N. Since everything is non-negative in the following, we may apply Fubini-Tonelli to obtain

kk+1n=11nf(xn)dx=n=11nkk+1f(xn)dx=n=11nkk+1f(xn)dx(xxn)=n=11nknk+1nf(x)dx=n=11nRχ{knxk+1n}f(x)dx=Rf(x)n=11nχ{kxnk+1x}dx.\begin{aligned} \int_k^{k+1} \sum_{n=1}^\infty \frac{1}{\sqrt{n}} \abs{f\p{x - \sqrt{n}}} \,\diff{x} &= \sum_{n=1}^\infty \frac{1}{\sqrt{n}} \int_k^{k+1} \abs{f\p{x - \sqrt{n}}} \,\diff{x} \\ &= \sum_{n=1}^\infty \frac{1}{\sqrt{n}} \int_k^{k+1} \abs{f\p{x - \sqrt{n}}} \,\diff{x} && \p{x \mapsto x - \sqrt{n}} \\ &= \sum_{n=1}^\infty \frac{1}{\sqrt{n}} \int_{k-\sqrt{n}}^{k+1-\sqrt{n}} \abs{f\p{x}} \,\diff{x} \\ &= \sum_{n=1}^\infty \frac{1}{\sqrt{n}} \int_\R \chi_{\set{k-\sqrt{n} \leq x \leq k+1-\sqrt{n}}} \abs{f\p{x}} \,\diff{x} \\ &= \int_\R \abs{f\p{x}} \sum_{n=1}^\infty \frac{1}{\sqrt{n}} \chi_{\set{k-x \leq \sqrt{n} \leq k+1-x}} \,\diff{x}. \end{aligned}

To complete the proof, we will estimate the sum. Notice that because n1n \geq 1,

kxnk+1x    max{1,kx}n1+max{1,kx}    (max{1,kx})2n(1+max{1,kx})2.\begin{aligned} k - x \leq \sqrt{n} \leq k + 1 - x &\implies \max\,\set{1, k - x} \leq \sqrt{n} \leq 1 + \max\,\set{1, k - x} \\ &\implies \p{\max\,\set{1, k - x}}^2 \leq n \leq \p{1 + \max\,\set{1, k - x}}^2. \end{aligned}

Thus, for each xx, there are at most

(1+max{1,kx})2(max{1,kx})2+1=2max{1,kx}+2\p{1 + \max\,\set{1, k - x}}^2 - \p{\max\,\set{1, k - x}}^2 + 1 = 2\max\,\set{1, k - x} + 2

non-zero terms in the sum. Hence,

kk+1n=11nf(xn)dxRf(x)2max{1,kx}+2max{1,kx}dx4fL1,\int_k^{k+1} \sum_{n=1}^\infty \frac{1}{\sqrt{n}} \abs{f\p{x - \sqrt{n}}} \,\diff{x} \leq \int_\R \abs{f\p{x}} \frac{2\max\,\set{1, k - x} + 2}{\max\,\set{1, k - x}} \,\diff{x} \leq 4\norm{f}_{L^1},

so the sum converges absolutely for almost every x[k,k+1]x \in \br{k, k+1}. Since kk is arbitrary, it follows that the sum converges absolutely almost everywhere.