Observe that the conformal mapping φ : H → D \func{\phi}{\H}{\D} φ : H → D , φ ( z ) = z − i z + i \phi\p{z} = \frac{z - i}{z + i} φ ( z ) = z + i z − i maps R ‾ → D \cl{\R} \to \D R → D , so it suffices to find a positive harmonic function on H \H H which is unbounded as ∣ z ∣ → ∞ \abs{z} \to \infty ∣ z ∣ → ∞ . The function u ( z ) = log ∣ z + i ∣ u\p{z} = \log\,\abs{z + i} u ( z ) = log ∣ z + i ∣ works: if Im z > 0 \Im{z} > 0 Im z > 0 , then
∣ z + i ∣ 2 = ∣ Re z ∣ 2 + ∣ i Im z + i ∣ 2 ≥ ∣ Im z + 1 ∣ 2 > 1 , \abs{z + i}^2
= \abs{\Re{z}}^2 + \abs{i\Im{z} + i}^2
\geq \abs{\Im{z} + 1}^2 > 1, ∣ z + i ∣ 2 = ∣ Re z ∣ 2 + ∣ i Im z + i ∣ 2 ≥ ∣ Im z + 1 ∣ 2 > 1 ,
so u ( z ) > 0 u\p{z} > 0 u ( z ) > 0 on H \H H . Furthermore, it is clear that u u u is unbounded as ∣ z ∣ → ∞ \abs{z} \to \infty ∣ z ∣ → ∞ , and so
v ( z ) = u ( φ − 1 ( z ) ) = log ∣ i 1 + z 1 − z + i ∣ = log ∣ 1 + z 1 − z + 1 ∣ v\p{z}
= u\p{\phi^{-1}\p{z}}
= \log\,\abs{i\frac{1 + z}{1 - z} + i}
= \log\,\abs{\frac{1 + z}{1 - z} + 1} v ( z ) = u ( φ − 1 ( z ) ) = log ∣ ∣ i 1 − z 1 + z + i ∣ ∣ = log ∣ ∣ 1 − z 1 + z + 1 ∣ ∣
works.
For r > 0 r > 0 r > 0 , let u r ( z ) = u ( r z ) u_r\p{z} = u\p{rz} u r ( z ) = u ( rz ) , which is a harmonic function on a neighborhood of D ‾ \cl{\D} D . We have the Poisson integral for u r u_r u r :
u r ( t e i θ ) = 1 2 π ∫ 0 2 π 1 − ∣ t ∣ 2 ∣ e i θ − t e i θ ∣ 2 u r ( e i θ ) d θ = 1 2 π ∫ 0 2 π 1 − ∣ t ∣ 2 ∣ e i θ − t e i θ ∣ 2 u ( r e i θ ) d θ . u_r\p{te^{i\theta}}
= \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - \abs{t}^2}{\abs{e^{i\theta} - te^{i\theta}}^2} u_r\p{e^{i\theta}} \,\diff\theta
= \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - \abs{t}^2}{\abs{e^{i\theta} - te^{i\theta}}^2} u\p{re^{i\theta}} \,\diff\theta. u r ( t e i θ ) = 2 π 1 ∫ 0 2 π ∣ e i θ − t e i θ ∣ 2 1 − ∣ t ∣ 2 u r ( e i θ ) d θ = 2 π 1 ∫ 0 2 π ∣ e i θ − t e i θ ∣ 2 1 − ∣ t ∣ 2 u ( r e i θ ) d θ .
Observe that the integrand g r g_r g r is bounded:
∣ 1 − ∣ t ∣ 2 ∣ e i θ − t e i θ ∣ 2 u r ( e i θ ) ∣ ≤ M 1 − t 2 ≕ A . \abs{\frac{1 - \abs{t}^2}{\abs{e^{i\theta} - te^{i\theta}}^2} u_r\p{e^{i\theta}}}
\leq \frac{M}{1 - t^2}
\eqqcolon A. ∣ ∣ ∣ e i θ − t e i θ ∣ 2 1 − ∣ t ∣ 2 u r ( e i θ ) ∣ ∣ ≤ 1 − t 2 M = : A .
Hence, A − g r ≥ 0 A - g_r \geq 0 A − g r ≥ 0 , so by Fatou's lemma,
1 2 π ∫ 0 2 π lim inf r → 1 ( A − 1 − ∣ t ∣ 2 ∣ e i θ − t e i θ ∣ 2 u ( r e i θ ) ) d θ ≤ lim inf r → 1 1 2 π ∫ 0 2 π A − 1 − ∣ t ∣ 2 ∣ e i θ − t e i θ ∣ 2 u ( r e i θ ) d θ ⟹ lim sup r → 1 u r ( t e i θ ) ≤ 1 2 π ∫ 0 2 π 1 − ∣ t ∣ 2 ∣ e i θ − t e i θ ∣ 2 ( lim sup r → 1 u ( r e i θ ) ) d θ . \begin{gathered}
\frac{1}{2\pi} \int_0^{2\pi} \liminf_{r\to1}\,\p{A - \frac{1 - \abs{t}^2}{\abs{e^{i\theta} - te^{i\theta}}^2} u\p{re^{i\theta}}} \,\diff\theta
\leq \liminf_{r\to1}\frac{1}{2\pi} \int_0^{2\pi} A - \frac{1 - \abs{t}^2}{\abs{e^{i\theta} - te^{i\theta}}^2} u\p{re^{i\theta}} \,\diff\theta \\
\implies
\limsup_{r\to1}\,u_r\p{te^{i\theta}}
\leq \frac{1}{2\pi} \int_0^{2\pi} \frac{1 - \abs{t}^2}{\abs{e^{i\theta} - te^{i\theta}}^2} \p{\limsup_{r\to1} u\p{re^{i\theta}}} \,\diff\theta.
\end{gathered} 2 π 1 ∫ 0 2 π r → 1 lim inf ( A − ∣ e i θ − t e i θ ∣ 2 1 − ∣ t ∣ 2 u ( r e i θ ) ) d θ ≤ r → 1 lim inf 2 π 1 ∫ 0 2 π A − ∣ e i θ − t e i θ ∣ 2 1 − ∣ t ∣ 2 u ( r e i θ ) d θ ⟹ r → 1 lim sup u r ( t e i θ ) ≤ 2 π 1 ∫ 0 2 π ∣ e i θ − t e i θ ∣ 2 1 − ∣ t ∣ 2 ( r → 1 lim sup u ( r e i θ ) ) d θ .
By construction, the left-hand side is u ( t e i θ ) u\p{te^{i\theta}} u ( t e i θ ) and the right-hand side is non-negative, and so this becomes
u ( t e i θ ) ≤ 0 , u\p{te^{i\theta}}
\leq 0, u ( t e i θ ) ≤ 0 ,
so u ( z ) ≤ 0 u\p{z} \leq 0 u ( z ) ≤ 0 on all of D \D D .