Spring 2016 - Problem 1

density argument, Lp spaces

Let

Kt(x)=(4πt)3/2ex2/4t,xR3, t>0,K_t\p{x} = \p{4\pi t}^{-3/2} e^{-\abs{x}^2/4t}, \quad x \in \R^3,\ t > 0,

where x\abs{x} is the Euclidean norm of xR3x \in \R^3.

  1. Show that the linear map

    L3(R3)ft1/2KtfL(R3)L^3\p{\R^3} \ni f \mapsto t^{1/2} K_t * f \in L^\infty\p{\R^3}

    is bounded, uniformly in t>0t > 0. Here

    (Ktf)(x)=R3Kt(xy)f(y)dy\p{K_t * f}\p{x} = \int_{\R^3} K_t\p{x - y}f\p{y} \,\diff{y}

    is the convolution.

  2. Prove that t1/2KtfL0t^{1/2} \norm{K_t * f}_{L^\infty} \to 0 as t0t \to 0, for fL3(R3)f \in L^3\p{\R^3}.

Solution.
  1. First, observe that 13+13/2=1\frac{1}{3} + \frac{1}{3/2} = 1. Then by Hölder's inequality,

    t1/2(Ktf)(x)t1/2R3Kt(xy)f(y)dyt1/2KtL3/2fL3.\begin{aligned} \abs{t^{1/2} \p{K_t * f}\p{x}} &\leq t^{1/2} \int_{\R^3} \abs{K_t\p{x-y}}\abs{f\p{y}} \,\diff{y} \\ &\leq t^{1/2} \norm{K_t}_{L^{3/2}} \norm{f}_{L^3}. \end{aligned}

    Next, we have

    KtL3/23/2=R3(4πt)9/4e3x2/2tdx=R3(4πt)9/4e3x2/2dx(xxt1/2)=t3/2(4πt)9/4R3e3x2/2dxC3/2t3/4    KtL3/2=Ct1/2.\begin{aligned} \norm{K_t}_{L^{3/2}}^{3/2} &= \int_{\R^3} \p{4\pi t}^{-9/4} e^{-3\abs{x}^2/2t} \,\diff{x} \\ &= \int_{\R^3} \p{4\pi t}^{-9/4} e^{-3\abs{x}^2/2} \,\diff{x} && \p{x \mapsto \frac{x}{t^{1/2}}} \\ &= \frac{t^{3/2}}{\p{4\pi t}^{9/4}} \int_{\R^3} e^{-3\abs{x}^2/2} \,\diff{x} \\ &\eqqcolon C^{3/2}t^{-{3/4}} \\ \implies \norm{K_t}_{L^{3/2}} &= Ct^{-1/2}. \end{aligned}

    Putting these together,

    t1/2(Ktf)(x)CfL3,\abs{t^{1/2} \p{K_t * f}\p{x}} \leq C\norm{f}_{L^3},

    so the map is bounded.

  2. Let ε>0\epsilon > 0. By density, there exists gCc(R3)g \in C_c\p{\R^3} such that fgL3<ε\norm{f - g}_{L^3} < \epsilon. Thus, by the triangle inequality and the estimate above,

    t1/2(Ktf)(x)t1/2(Kt(fg))(x)+t1/2(Ktg)(x)CfgL3+Ct1/2(Ktg)(x)Cε+Ct1/2(Ktg)(x)\begin{aligned} \abs{t^{1/2} \p{K_t * f}\p{x}} &\leq \abs{t^{1/2} \p{K_t * \p{f - g}}\p{x}} + \abs{t^{1/2} \p{K_t * g}\p{x}} \\ &\leq C\norm{f - g}_{L^3} + C\abs{t^{1/2} \p{K_t * g}\p{x}} \\ &\leq C\epsilon + C\abs{t^{1/2} \p{K_t * g}\p{x}} \end{aligned}

    Since gg is compactly supported, it is bounded by some M>0M > 0 and so

    R3Kt(xy)g(y)dy(4πt)3/2R3exy2/4tg(y)dy=(4πt)3/2R3exy2/4tg(y)dy(yxyt)=(4πt)3/2t3/2R3ey2/4g(xyt)dy(4π)3/2MR3ey2/4dyA.\begin{aligned} \abs{\int_{\R^3} K_t\p{x - y} g\p{y} \,\diff{y}} &\leq \p{4\pi t}^{-3/2} \int_{\R^3} e^{-\abs{x-y}^2/4t} \abs{g\p{y}} \,\diff{y} \\ &= \p{4\pi t}^{-3/2} \int_{\R^3} e^{-\abs{x-y}^2/4t} \abs{g\p{y}} \,\diff{y} && \p{y \mapsto \frac{x - y}{\sqrt{t}}} \\ &= \p{4\pi t}^{-3/2} t^{3/2} \int_{\R^3} e^{-\abs{y}^2/4} \abs{g\p{x - y\sqrt{t}}} \,\diff{y} \\ &\leq \p{4\pi}^{-3/2} M \int_{\R^3} e^{-\abs{y}^2/4} \,\diff{y} \\ &\eqqcolon A. \end{aligned}

    Thus,

    t1/2(Ktf)(x)Cε+CAt1/2    lim supt0t1/2(Ktf)(x)Cε,\abs{t^{1/2} \p{K_t * f}\p{x}} \leq C\epsilon + CAt^{1/2} \implies \limsup_{t\to0}\,\abs{t^{1/2} \p{K_t * f}\p{x}} \leq C\epsilon,

    which was what we wanted to show.