Fall 2016 - Problem 8

Jensen's formula

Let ff be a continuous complex-valued function on the closed unit disk D\cl{\D} such that ff is holomorphic on the open disk D={zCz<1}\D = \set{z \in \C \mid \abs{z} < 1} and f(0)0f\p{0} \neq 0.

  1. Show that if 0<r<10 < r < 1 and if infz=rf(z)>0\inf_{\abs{z}=r} \abs{f\p{z}} > 0, then

    12π02πlogf(reiθ)dθlogf(0).\frac{1}{2\pi} \int_0^{2\pi} \log\,\abs{f\p{re^{i\theta}}} \,\diff\theta \geq \log\,\abs{f\p{0}}.
  2. Show that m({θ[0,2π]f(eiθ)=0})=0m\p{\set{\theta \in \br{0, 2\pi} \mid f\p{e^{i\theta}} = 0}} = 0, where m(E)m\p{E} denotes the Lebesgue measure of E[0,2π]E \subseteq \br{0, 2\pi}.

Solution.
  1. For such an rr, Jensen's formula applies. Thus, of {an}n\set{a_n}_n denotes the zeroes of ff on the disk (since f(0)0f\p{0} \neq 0, ff is not identically zero, so there are only countably many zeroes), we have

    12π02πlogf(reiθ)dθ=logf(0)an<rloganrlogf(0).\frac{1}{2\pi} \int_0^{2\pi} \log\,\abs{f\p{re^{i\theta}}} \,\diff\theta = \log\,\abs{f\p{0}} - \sum_{\abs{a_n}<r} \log\frac{\abs{a_n}}{r} \geq \log\,\abs{f\p{0}}.
  2. Since ff has at most countably many zeroes in the disk, there exists a sequence {rn}n(0,1)\set{r_n}_n \subseteq \p{0,1} of radii increasing to 11 such that infz=rnf(z)>0\inf_{\abs{z}=r_n} \abs{f\p{z}} > 0 for all n1n \geq 1. Since ff is continuous and not identically zero on D\cl{\D}, we have 0<fL<0 < \norm{f}_{L^\infty} < \infty, which gives

    logf(rneiθ)=logf(rneiθ)fL+logfLlogf(rneiθ)fL+logfL=logfLlogf(rneiθ)+logfL2logfLlogf(rneiθ).\begin{aligned} \abs{\log\,\abs{f\p{r_ne^{i\theta}}}} &= \abs{\log\frac{\abs{f\p{r_ne^{i\theta}}}}{\norm{f}_{L^\infty}} + \log\,\norm{f}_{L^\infty}} \\ &\leq \abs{\log\frac{\abs{f\p{r_ne^{i\theta}}}}{\norm{f}_{L^\infty}}} + \abs{\log\,\norm{f}_{L^\infty}} \\ &= \log\,\norm{f}_{L^\infty} - \log\,\abs{f\p{r_ne^{i\theta}}} + \abs{\log\,\norm{f}_{L^\infty}} \\ &\leq 2\abs{\log\,\norm{f}_{L^\infty}} - \log\,\abs{f\p{r_ne^{i\theta}}}. \end{aligned}

    Averaging, we obtain

    12π02πlogf(rneiθ)dθ2logfLlogf(0).\frac{1}{2\pi} \int_0^{2\pi} \abs{\log\,\abs{f\p{r_ne^{i\theta}}}} \,\diff\theta \leq 2\abs{\log\,\norm{f}_{L^\infty}} - \log\,\abs{f\p{0}}.

    By Fatou's lemma,

    12π02πlogf(eiθ)dθ=12π02πlim infnlogf(rneiθ)dθlim infn12π02πlogf(rneiθ)dθ2logfLlogf(0)<,\begin{aligned} \frac{1}{2\pi} \int_0^{2\pi} \abs{\log\,\abs{f\p{e^{i\theta}}}} \,\diff\theta &= \frac{1}{2\pi} \int_0^{2\pi} \liminf_{n\to\infty}\,\abs{\log\,\abs{f\p{r_ne^{i\theta}}}} \,\diff\theta \\ &\leq \liminf_{n\to\infty} \frac{1}{2\pi} \int_0^{2\pi} \abs{\log\,\abs{f\p{r_ne^{i\theta}}}} \,\diff\theta \\ &\leq 2\abs{\log\,\norm{f}_{L^\infty}} - \log\,\abs{f\p{0}} \\ &< \infty, \end{aligned}

    since f(0)0f\p{0} \neq 0. Thus, logf(eiθ)\log\,\abs{f\p{e^{i\theta}}} \neq -\infty for almost every θ\theta, hence f(eiθ)0f\p{e^{i\theta}} \neq 0 for almost every θ\theta.