Fall 2016 - Problem 7

Hilbert spaces

Let H\mathcal{H} be the space of holomorphic functions ff on the unit disc D={zCz<1}\D = \set{z \in \C \mid \abs{z} < 1} such that

Df(z)2dA(z)<.\int_\D \abs{f\p{z}}^2 \,\diff{A}\p{z} < \infty.

Here integration is with respect to Lebesgue measure AA on D\D. The vector space H\mathcal{H} is a Hilbert space if equipped with the inner product

f,g=Df(z)g(z)dA(z)\inner{f, g} = \int_\D f\p{z} \conj{g\p{z}} \,\diff{A}\p{z}

for f,gHf, g \in \mathcal{H}. Fix z0Dz_0 \in \D and define Lz0(f)=f(z0)L_{z_0}\p{f} = f\p{z_0} for fHf \in \mathcal{H}.

  1. Show that Lz0 ⁣:HC\func{L_{z_0}}{\mathcal{H}}{\C} is a bounded linear functional on H\mathcal{H}.

  2. Find an explicit function gz0Hg_{z_0} \in \mathcal{H} such that

    Lz0(f)=f(z0)=f,gz0L_{z_0}\p{f} = f\p{z_0} = \inner{f, g_{z_0}}

    for all fHf \in \mathcal{H}.

Solution.
  1. Let δ=12d(z0,Dc)\delta = \frac{1}{2}d\p{z_0, \D^\comp} so that B(z0,δ)D\cl{B\p{z_0, \delta}} \subseteq \D. Then by the mean value property and Cauchy-Schwarz,

    f(z0)1πδ2B(z0,δ)f(z)dA(z)m(D)1/2πδ2fL2,\abs{f\p{z_0}} \leq \frac{1}{\pi\delta^2} \iint_{B\p{z_0,\delta}} \abs{f\p{z}} \,\diff{A}\p{z} \leq \frac{m\p{\D}^{1/2}}{\pi\delta^2} \norm{f}_{L^2},

    so Lz0L_{z_0} is a bounded linear operator.

  2. Recall that

    f(z0)=1πDf(z)(1zz0)2dA(z).f\p{z_0} = \frac{1}{\pi} \int_\D \frac{f\p{z}}{\p{1 - \conj{z}z_0}^2} \,\diff{A}\p{z}.

    From this, we immediately see that g(z)=1(1zz0)2g\p{z} = \frac{1}{\p{1 - z\conj{z_0}}^2} represents Lz0L_{z_0}: clearly gg is holomorphic, and it is bounded on D\D since its only pole is at z0z02\frac{z_0}{\abs{z_0}^2} which is outside D\D. To complete the proof, it remains to prove this formula.

    Write

    f(z)=n=0anznand1(1zz0)2=n=0(n+1)(zz0)n.f\p{z} = \sum_{n=0}^\infty a_nz^n \quad\text{and}\quad \frac{1}{\p{1 - \conj{z}z_0}^2} = \sum_{n=0}^\infty \p{n + 1}\p{\conj{z}z_0}^n.

    Observe also that if nmn \neq m,

    DznzmdA(z)=0102πrn+m+1einθeimθdθdr=0.\int_\D z^n \conj{z}^m \,\diff{A}\p{z} = \int_0^1 \int_0^{2\pi} r^{n+m+1} e^{in\theta} e^{-im\theta} \diff\theta \,\diff{r} = 0.

    If n=mn = m, then

    DznzmdA(z)=πn+1.\int_\D z^n \conj{z}^m \,\diff{A}\p{z} = \frac{\pi}{n + 1}.

    Hence, because all series converge locally uniformly, we have

    1πDf(z)1zz0dA(z)=1πD(n=0anzn)(m=0(m+1)(zz0)m)dA(z)=1πn=0m=0anz0m(m+1)DznzmdA(z)=1πn=0anz0n(n+1)πn+1=n=0anz0n=f(z0),\begin{aligned} \frac{1}{\pi} \int_\D \frac{f\p{z}}{1 - \conj{z}z_0} \,\diff{A}\p{z} &= \frac{1}{\pi} \int_\D \p{\sum_{n=0}^\infty a_nz^n} \p{\sum_{m=0}^\infty \p{m+1}\p{\conj{z}z_0}^m} \,\diff{A}\p{z} \\ &= \frac{1}{\pi} \sum_{n=0}^\infty \sum_{m=0}^\infty a_nz_0^m\p{m + 1} \int_\D z^n\conj{z}^m \,\diff{A}\p{z} \\ &= \frac{1}{\pi} \sum_{n=0}^\infty a_nz_0^n\p{n + 1} \frac{\pi}{n + 1} \\ &= \sum_{n=0}^\infty a_n z_0^n \\ &= f\p{z_0}, \end{aligned}

    which completes the proof.