Fall 2016 - Problem 5

measure theory

Let X=C([0,1])X = C\p{\br{0,1}} be the Banach space of real-valued continuous functions on [0,1]\br{0,1} equipped with the norm

f=maxx[0,1]f(x).\norm{f} = \max_{x \in \br{0,1}} \abs{f\p{x}}.

Let A\mathcal{A} be the Borel σ\sigma-algebra on XX.

Show that A\mathcal{A} is the smallest σ\sigma-algebra on XX that contains all sets of the form

S(t,B)={fXf(t)B},S\p{t, B} = \set{f \in X \mid f\p{t} \in B},

where t[0,1]t \in \br{0, 1} and BRB \subseteq \R is a Borel set in R\R.

Solution.

Let S\mathcal{S} denote the σ\sigma-algebra generated by the S(t,B)S\p{t, B}. For t[0,1]t \in \br{0, 1}, let et ⁣:XR\func{e_t}{X}{\R} be the evaluation map, i.e., ff(t)f \mapsto f\p{t}. Observe then that

et(f)et(g)=f(t)g(t)fg,\abs{e_t\p{f} - e_t\p{g}} = \abs{f\p{t} - g\p{t}} \leq \norm{f - g},

so ete_t is continuous for any tt. Since et1(B)=S(t,B)e_t^{-1}\p{B} = S\p{t, B}, it follows that SA\mathcal{S} \subseteq \mathcal{A}.

Conversely, first observe that

fr    maxx[0,1]f(x)r    supqQ[0,1]f(q)r    fqQ[0,1]eq1([r,r]).\begin{aligned} \norm{f} \leq r &\iff \max_{x \in \br{0,1}} \abs{f\p{x}} \leq r \\ &\iff \sup_{q \in \Q \cap \br{0,1}} \abs{f\p{q}} \leq r \\ &\iff f \in \bigcap_{q \in \Q \cap \br{0,1}} e_q^{-1}\p{\br{-r, r}}. \end{aligned}

Thus,

B(0,r)=qQ[0,1]eq1([r,r])S\cl{B\p{0, r}} = \bigcap_{q \in \Q \cap \br{0,1}} e_q^{-1}\p{\br{-r, r}} \in \mathcal{S}

and because translation gf+gg \mapsto f + g is a continuous map XXX \to X, it follows that B(f,r)S\cl{B\p{f, r}} \in \mathcal{S} for any fXf \in X and r>0r > 0. Thus,

B(f,r)=n=1B(f,r1n),B\p{f, r} = \bigcup_{n=1}^\infty \cl{B\p{f, r - \frac{1}{n}}},

so open balls are in S\mathcal{S} as well. Finally, because XX is separable (e.g., by Stone-Weierstrass), the topology on XX is generated by a countable family of open balls, and so USU \in \mathcal{S} for any open UXU \subseteq X. It follows that AS\mathcal{A} \subseteq \mathcal{S}, so we have equality.