Fall 2016 - Problem 3

weak convergence

If XX is a compact metric space, we denote by P(X)\mathcal{P}\p{X} the set of positive BOrel measures μ\mu on XX with μ(X)=1\mu\p{X} = 1.

  1. Let φ ⁣:X[0,]\func{\phi}{X}{\br{0,\infty}} be a lower-semicontinuous function on a compact metric space XX. Show that if μ\mu and μn\mu_n for nNn \in \N are in P(X)\mathcal{P}\p{X} and μnμ\mu_n \to \mu with respect to the weak-star topology on P(X)\mathcal{P}\p{X}, then

    φdμlim infnφdμn.\int \phi \,\diff\mu \leq \liminf_{n\to\infty} \int \phi \,\diff\mu_n.
  2. Let KRdK \subseteq \R^d be a compact set. For μP(K)\mu \in \mathcal{P}\p{K}, we define

    E(μ)=KK1xydμ(x)dμ(y).E\p{\mu} = \int_K \int_K \frac{1}{\abs{x - y}} \,\diff\mu\p{x} \,\diff\mu\p{y}.

    Here z\abs{z} denotes the Euclidean norm of zRdz \in \R^d.

    Show that the function E ⁣:P(K)[0,]\func{E}{\mathcal{P}\p{K}}{\br{0,\infty}} attains its minimum on P(K)\mathcal{P}\p{K} (which could possibly be \infty).

Solution.
  1. Since φ\phi is lower-semicontinuous, there exists a sequence {fn}n\set{f_n}_n of continuous functions on XX which increase pointwise to φ\phi, and so we have

    fkdμnφdμn    lim infnfkdμnlim infnφdμn.\int f_k \,\diff\mu_n \leq \int \phi \,\diff\mu_n \implies \liminf_{n\to\infty} \int f_k \,\diff\mu_n \leq \liminf_{n\to\infty} \int \phi \,\diff\mu_n.

    for all n,kNn, k \in \N. By Riesz representation, (C(X))\p{C\p{X}}^* is the space of positive Borel measures on XX. Hence, weak-* convergence of {μn}n\set{\mu_n}_n means

    lim infnfkdμn=fkdμ,\liminf_{n\to\infty} \int f_k \,\diff\mu_n = \int f_k \,\diff\mu,

    since each fkf_k is continuous. Since the fkf_k are increasing, this means that f1fkf_1 \leq f_k, and because XX is compact, f1f_1 is bounded. Hence, the fkf_k are bounded uniformly from below, so we may apply monotone convergence to get

    limkfkdμ=φdμ.\lim_{k\to\infty} \int f_k \,\diff\mu = \int \phi \,\diff\mu.

    Hence,

    φdμlim infnφdμn.\int \phi \,\diff\mu \leq \liminf_{n\to\infty} \int \phi \,\diff\mu_n.
  2. Let I=infP(K)EI = \inf_{\mathcal{P}\p{K}} E. If I=I = \infty, then any measure on P(K)\mathcal{P}\p{K} is a minimizer, e.g., a normalized Lebesgue measure will work. Otherwise, let {μn}nP(K)\set{\mu_n}_n \subseteq \mathcal{P}\p{K} be a sequence such that E(μn)IE\p{\mu_n} \to I as nn \to \infty. By Banach-Alaoglu (the μn\mu_n all hae norm 11), there exists a measure μP(K)\mu \in \mathcal{P}\p{K} such that, passing to a subsequence if necessary, μnμ\mu_n \to \mu weakly-*.

    We claim that μnμnμμ\mu_n \otimes \mu_n \to \mu \otimes \mu weakly-* in (C(K×K))\p{C\p{K \times K}}^* as well. Indeed, by Stone-Weierstrass, the set

    A={k=1nckfk(x)gk(x)|nN, ckR, fk,gkC(K)}A = \set{\sum_{k=1}^n c_kf_k\p{x}g_k\p{x} \st n \in \N,\ c_k \in \R,\ f_k, g_k \in C\p{K}}

    is uniformly dense in C(K×K)C\p{K \times K}. Moreover,

    limnKKk=1Nckfk(x)gk(y)dμn(x)dμn(y)=limnk=1Nck(Kfk(x)dμn(x))(Kgk(y)dμn(y))=k=1Nk=1Nck(Kfk(x)dμ(x))(Kgk(y)dμ(y))=KKk=1Nckfk(x)gk(y)dμ(x)dμ(y),\begin{aligned} \lim_{n\to\infty} \int_K \int_K \sum_{k=1}^N c_k f_k\p{x} g_k\p{y} \,\diff\mu_n\p{x} \,\diff\mu_n\p{y} &= \lim_{n\to\infty} \sum_{k=1}^N c_k \p{\int_K f_k\p{x} \,\diff\mu_n\p{x}} \p{\int_K g_k\p{y} \,\diff\mu_n\p{y}} \\ &= \sum_{k=1}^N \sum_{k=1}^N c_k \p{\int_K f_k\p{x} \,\diff\mu\p{x}} \p{\int_K g_k\p{y} \,\diff\mu\p{y}} \\ &= \int_K \int_K \sum_{k=1}^N c_k f_k\p{x} g_k\p{y} \,\diff\mu\p{x} \,\diff\mu\p{y}, \end{aligned}

    so μnμnμμ\mu_n \otimes \mu_n \to \mu \otimes \mu on a dense set, hence on all of C(K×K)C\p{K \times K}. Finally, observe that 1xy\frac{1}{\abs{x - y}} is a lower-semicontinuous function on K×KK \times K: if xyx \neq y, then it is continuous there, and otherwise, if x=yx = y, then the function tends to \infty when approaching these points. Thus, by (1),

    E(μ)=KK1xydμ(x)dμ(y)lim infnKK1xydμn(x)dμn(y)=lim infnE(μn)=I,\begin{aligned} E\p{\mu} &= \int_K \int_K \frac{1}{\abs{x - y}} \,\diff\mu\p{x} \,\diff\mu\p{y} \\ &\leq \liminf_{n\to\infty} \int_K \int_K \frac{1}{\abs{x - y}} \,\diff\mu_n\p{x} \,\diff\mu_n\p{y} \\ &= \liminf_{n\to\infty} E\p{\mu_n} \\ &= I, \end{aligned}

    so μ\mu is a minimizer.