Fall 2016 - Problem 2

Lebesgue differentiation theorem

Let μ\mu be a finite positive Borel measure on R\R that is singular to Lebesgue measure. Show that

limr0+μ([xr,x+r])2r=\lim_{r\to0^+}\frac{\mu\p{\br{x - r, x+ r}}}{2r} = \infty

for μ\mu-almost every xRx \in \R.

Solution.

Since μ\mu is singular with respect to Lebesgue measure (which we denote mm), there exists SRS \subseteq \R Borel such that μ(S)=0\mu\p{S} = 0 and m(Sc)=0m\p{S^\comp} = 0. For kNk \in \N, let

Ek={xSc|lim supr0+μ(B(x,r))m(B(x,r))<1k}.E_k = \set{x \in S^\comp \st \limsup_{r\to0^+} \frac{\mu\p{B\p{x, r}}}{m\p{B\p{x, r}}} < \frac{1}{k}}.

Let ε>0\epsilon > 0. By regularity of the Lebesgue measure, there exists an open set UScU \supseteq S^\comp such that

m(U)m(USc)<ε.m\p{U} \leq m\p{U \setminus S^\comp} < \epsilon.

For any xEkx \in E_k, there exists an rx>0r_x > 0 so that B(x,rx)UB\p{x, r_x} \subseteq U (since UU is open) and

μ(B(x,5rx))m(B(x,5rx))<1k,\frac{\mu\p{B\p{x, 5r_x}}}{m\p{B\p{x, 5r_x}}} < \frac{1}{k},

by definition of EkE_k. By the Vitali covering lemma, there exists a subset {xn}nEk\set{x_n}_n \subseteq E_k such that

xScB(x,rx)n=1B(xn,5rn),\bigcup_{x \in S^\comp} B\p{x, r_x} \subseteq \bigcup_{n=1}^\infty B\p{x_n, 5r_n},

where rn=rxnr_n = r_{x_n} and {B(xn,rn)}n\set{B\p{x_n, r_n}}_n are pairwise disjoint. Hence,

μ(Sc)μ(xScB(x,rx))μ(n=1B(x,5rn))n=1μ(B(xn,5rn))1kn=1m(B(xn,5rn))(xnEk)=5km(n=1B(xn,rn))(B(xn,rn) are disjoint)5km(U)5εk.\begin{aligned} \mu\p{S^\comp} &\leq \mu\p{\bigcup_{x \in S^\comp} B\p{x, r_x}} \\ &\leq \mu\p{\bigcup_{n=1}^\infty B\p{x, 5r_n}} \\ &\leq \sum_{n=1}^\infty \mu\p{B\p{x_n, 5r_n}} \\ &\leq \frac{1}{k}\sum_{n=1}^\infty m\p{B\p{x_n, 5r_n}} && \p{x_n \in E_k} \\ &= \frac{5}{k} m\p{\bigcup_{n=1}^\infty B\p{x_n, r_n}} && \p{B\p{x_n, r_n} \text{ are disjoint}} \\ &\leq \frac{5}{k} m\p{U} \\ &\leq \frac{5\epsilon}{k}. \end{aligned}

Hence, μ(Ek)=0\mu\p{E_k} = 0 for all kk, so on ScS^\comp, the limit holds μ\mu-almost everywhere, hence μ\mu-almost everywhere on R\R since μ(S)=0\mu\p{S} = 0.