Lp spaces
We consider the space L1(μ) of integrable functions on a measure space (X,M,μ). For g∈L1(μ), let
∥g∥L1=∫∣g(x)∣dμ
be the corresponding L1-norm. Suppose that f and fn for n∈N are functions in L1(μ) such that
- fn(x)→f(x) for μ-almost every x∈X and
- ∥fn∥L1→∥f∥L1.
Show that then ∥fn−f∥L1→0.
Solution.
Observe that
∣fn−f∣≤∣fn∣+∣f∣⟹∣fn∣+∣f∣−∣fn−f∣≥0
by the triangle inequality. Hence, we may apply Fatou's lemma to obtain
∫n→∞liminf(∣fn∣+∣f∣−∣fn−f∣)dμ≤n→∞liminf(∫∣fn∣dμ+∫∣f∣dμ−∫∣fn−f∣dμ)=n→∞liminf(∥fn∥L1+∥f∥L1−∥fn−f∥L1)=2∥f∥L1−n→∞limsup∥fn−f∥L1.
Notice that because fn→f almost everywhere, the left-hand side becomes
∫n→∞liminf(∣fn∣+∣f∣−∣fn−f∣)dμ=∫2∣f∣dμ=2∥f∥L1.
Rearranging the first inequality, we get
n→∞limsup∥fn−f∥L1≤0,
so ∥fn−f∥L1→0.