Fall 2016 - Problem 1

Lp spaces

We consider the space L1(μ)L^1\p{\mu} of integrable functions on a measure space (X,M,μ)\p{X, \mathcal{M}, \mu}. For gL1(μ)g \in L^1\p{\mu}, let

gL1=g(x)dμ\norm{g}_{L^1} = \int \abs{g\p{x}} \,\diff\mu

be the corresponding L1L^1-norm. Suppose that ff and fnf_n for nNn \in \N are functions in L1(μ)L^1\p{\mu} such that

  1. fn(x)f(x)f_n\p{x} \to f\p{x} for μ\mu-almost every xXx \in X and
  2. fnL1fL1\norm{f_n}_{L^1} \to \norm{f}_{L^1}.

Show that then fnfL10\norm{f_n - f}_{L^1} \to 0.

Solution.

Observe that

fnffn+f    fn+ffnf0\abs{f_n - f} \leq \abs{f_n} + \abs{f} \implies \abs{f_n} + \abs{f} - \abs{f_n - f} \geq 0

by the triangle inequality. Hence, we may apply Fatou's lemma to obtain

lim infn(fn+ffnf)dμlim infn(fndμ+fdμfnfdμ)=lim infn(fnL1+fL1fnfL1)=2fL1lim supnfnfL1.\begin{aligned} \int \liminf_{n\to\infty}\,\p{\abs{f_n} + \abs{f} - \abs{f_n - f}} \,\diff\mu &\leq \liminf_{n\to\infty}\,\p{\int \abs{f_n} \,\diff\mu + \int \abs{f} \,\diff\mu - \int \abs{f_n - f} \,\diff\mu} \\ &= \liminf_{n\to\infty}\,\p{\norm{f_n}_{L^1} + \norm{f}_{L^1} - \norm{f_n - f}_{L^1}} \\ &= 2\norm{f}_{L^1} - \limsup_{n\to\infty}\,\norm{f_n - f}_{L^1}. \end{aligned}

Notice that because fnff_n \to f almost everywhere, the left-hand side becomes

lim infn(fn+ffnf)dμ=2fdμ=2fL1.\int \liminf_{n\to\infty}\,\p{\abs{f_n} + \abs{f} - \abs{f_n - f}} \,\diff\mu = \int 2\abs{f} \,\diff\mu = 2\norm{f}_{L^1}.

Rearranging the first inequality, we get

lim supnfnfL10,\limsup_{n\to\infty}\,\norm{f_n - f}_{L^1} \leq 0,

so fnfL10\norm{f_n - f}_{L^1} \to 0.