Spring 2015 - Problem 5

Fourier analysis

Let uL2(R)u \in L^2\p{\R} and let us set

U(x,ξ)=e(x+iξy)2/2u(y)dy,x,ξR.U\p{x, \xi} = \int e^{-\p{x+i\xi-y}^2/2} u\p{y} \,\diff{y}, \quad x, \xi \in \R.

Show that U(x,ξ)U\p{x, \xi} is well-defined on R2\R^2 and that there exists a constant C>0C > 0 such that for all uL2(R)u \in L^2\p{\R}, we have

U(x,ξ)2eξ2dxdξ=Cu(y)2dy.\iint \abs{U\p{x, \xi}}^2 e^{-\xi^2} \,\diff{x} \,\diff{\xi} = C \int \abs{u\p{y}}^2 \,\diff{y}.
Solution.

First, observe that

(x+iξy)2=(xy)2+2i(xy)ξξ2.\p{x + i\xi - y}^2 = \p{x - y}^2 + 2i\p{x - y}\xi - \xi^2.

Thus, its real part is (xy)2ξ2\p{x - y}^2 - \xi^2, which gives the estimate

U(x,ξ)e(xy)2/2eξ2/2u(y)dy(e(xy)2eξ2dy)1/2uL2(Cauchy-Schwarz)=eξ2/2(ey2dy)1/2uL2(yxy)<,\begin{aligned} \abs{U\p{x, \xi}} &\leq \int e^{-\p{x-y}^2/2} e^{-\xi^2/2} \abs{u\p{y}} \,\diff{y} \\ &\leq \p{\int e^{-\p{x-y}^2} e^{\xi^2} \,\diff{y}}^{1/2} \norm{u}_{L^2} && \p{\text{Cauchy-Schwarz}} \\ &= e^{\xi^2/2} \p{\int e^{-y^2} \,\diff{y}}^{1/2} \norm{u}_{L^2} && \p{y \mapsto x - y} \\ &< \infty, \end{aligned}

since uL2u \in L^2 and ey2L1e^{-y^2} \in L^1. Thus, U(x,ξ)U\p{x, \xi} exists everywhere on R2\R^2. For the second part, observe that

U(x,ξ)2eξ2dxdξ=e(xy)2/2ei(xy)ξeξ2/2u(y)dy2eξ2dxdξ=eiyξey2/2u(xy)dy2dξdx(Fubini-Tonelli)=ey2/2u(xy)^L22dx=ey2/2u(xy)L22dx(Plancherel)=ey2u(xy)2dydx=ey2u(xy)2dxdy(Fubini-Tonelli)=(ey2dy)(u(x)2dx)(xxy)=πu(y)2dy,\begin{aligned} \iint \abs{U\p{x, \xi}}^2 e^{-\xi^2} \,\diff{x} \,\diff{\xi} &= \iint \abs{\int e^{-\p{x-y}^2/2} e^{i\p{x-y}\xi} e^{\xi^2/2} u\p{y} \,\diff{y}}^2 e^{-\xi^2} \,\diff{x} \,\diff{\xi} \\ &= \iint \abs{\int e^{iy\xi} e^{-y^2/2} u\p{x - y} \,\diff{y}}^2 \,\diff{\xi} \,\diff{x} && \p{\text{Fubini-Tonelli}} \\ &= \iint \norm{\widehat{e^{-y^2/2} u\p{x - y}}}_{L^2}^2 \,\diff{x} \\ &= \int \norm{e^{-y^2/2} u\p{x - y}}_{L^2}^2 \,\diff{x} && \p{\text{Plancherel}} \\ &= \iint e^{-y^2} \abs{u\p{x - y}}^2 \,\diff{y} \,\diff{x} \\ &= \int e^{-y^2} \int \abs{u\p{x - y}}^2 \,\diff{x} \,\diff{y} && \p{\text{Fubini-Tonelli}} \\ &= \p{\int e^{-y^2} \,\diff{y}} \p{\int \abs{u\p{x}}^2 \,\diff{x} } && \p{x \mapsto x - y} \\ &= \sqrt{\pi} \int \abs{u\p{y}}^2 \,\diff{y}, \end{aligned}

so C=πC = \sqrt{\pi}.