Let f ∈ L l o c 2 ( R n ) f \in L^2_{\mathrm{loc}}\p{\R^n} f ∈ L loc 2 ( R n ) , g ∈ L l o c 3 ( R n ) g \in L^3_{\mathrm{loc}}\p{\R^n} g ∈ L loc 3 ( R n ) . Assume that for all real r ≥ 1 r \geq 1 r ≥ 1 , we have
∫ { r ≤ ∣ x ∣ ≤ 2 r } ∣ f ( x ) ∣ 2 d x ≤ r a , ∫ { r ≤ ∣ x ∣ ≤ 2 r } ∣ g ( x ) ∣ 3 d x ≤ r b . \int_{\set{r \leq \abs{x} \leq 2r}} \abs{f\p{x}}^2 \,\diff{x} \leq r^a,
\quad \int_{\set{r \leq \abs{x} \leq 2r}} \abs{g\p{x}}^3 \,\diff{x} \leq r^b. ∫ { r ≤ ∣ x ∣ ≤ 2 r } ∣ f ( x ) ∣ 2 d x ≤ r a , ∫ { r ≤ ∣ x ∣ ≤ 2 r } ∣ g ( x ) ∣ 3 d x ≤ r b .
Here a , b ∈ R a, b \in \R a , b ∈ R are such that 3 a + 2 b + n < 0 3a + 2b + n < 0 3 a + 2 b + n < 0 . Show that f g ∈ L 1 ( R n ) fg \in L^1\p{\R^n} f g ∈ L 1 ( R n ) .
Solution.
Observe that 1 2 + 1 3 + 1 6 = 1 \frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1 2 1 + 3 1 + 6 1 = 1 . Hence, by Hölder's inequality,
∫ B ( 0 , 1 ) ∣ f ( x ) g ( x ) ∣ d x ≤ ∥ f χ B ( 0 , 1 ) ∥ L 2 ∥ g χ B ( 0 , 1 ) ∥ L 3 ∥ χ B ( 0 , 1 ) ∥ L 6 ≤ ∥ f χ B ( 0 , 1 ) ∥ L 2 ∥ g χ B ( 0 , 1 ) ∥ L 3 m ( B ( 0 , 1 ) ) 1 / 6 < ∞ , \begin{aligned}
\int_{B\p{0,1}} \abs{f\p{x}g\p{x}} \,\diff{x}
&\leq \norm{f\chi_{B\p{0,1}}}_{L^2} \norm{g\chi_{B\p{0,1}}}_{L^3} \norm{\chi_{B\p{0,1}}}_{L^6} \\
&\leq \norm{f\chi_{B\p{0,1}}}_{L^2} \norm{g\chi_{B\p{0,1}}}_{L^3} m\p{B\p{0,1}}^{1/6} \\
&< \infty,
\end{aligned} ∫ B ( 0 , 1 ) ∣ f ( x ) g ( x ) ∣ d x ≤ ∥ ∥ f χ B ( 0 , 1 ) ∥ ∥ L 2 ∥ ∥ g χ B ( 0 , 1 ) ∥ ∥ L 3 ∥ ∥ χ B ( 0 , 1 ) ∥ ∥ L 6 ≤ ∥ ∥ f χ B ( 0 , 1 ) ∥ ∥ L 2 ∥ ∥ g χ B ( 0 , 1 ) ∥ ∥ L 3 m ( B ( 0 , 1 ) ) 1/6 < ∞ ,
since f ∈ L l o c 2 ( R n ) f \in L^2_{\mathrm{loc}}\p{\R^n} f ∈ L loc 2 ( R n ) and g ∈ L l o c 3 ( R n ) g \in L^3_{\mathrm{loc}}\p{\R^n} g ∈ L loc 3 ( R n ) . Hence, it remains to consider the integral on B ( 0 , 1 ) c B\p{0, 1}^\comp B ( 0 , 1 ) c . First, recall that m ( B ( 0 , r ) ) = C r n m\p{B\p{0, r}} = Cr^n m ( B ( 0 , r ) ) = C r n for some constant C > 0 C > 0 C > 0 depending only on the dimension n n n . Thus, applying Hölder again,
∫ B ( 0 , 1 ) c ∣ f ( x ) g ( x ) ∣ d x = ∑ k = 0 ∞ ∫ { 2 k ≤ ∣ x ∣ ≤ 2 k + 1 } ∣ f ( x ) g ( x ) ∣ d x ≤ ∑ k = 0 ∞ ( ∫ { 2 k ≤ ∣ x ∣ ≤ 2 k + 1 } ∣ f ( x ) ∣ 2 d x ) 1 / 2 ( ∫ { 2 k ≤ ∣ x ∣ ≤ 2 k + 1 } ∣ f ( x ) ∣ 3 d x ) 1 / 3 ( ∫ { 2 k ≤ ∣ x ∣ ≤ 2 k + 1 } d x ) 1 / 6 ≤ ∑ k = 0 ∞ 2 k a / 2 2 k b / 3 ( m ( B ( 0 , 2 k + 1 ) ) − m ( B ( 0 , 2 k ) ) ) 1 / 6 = C 1 / 6 ( 2 n − 1 ) ∑ k = 0 ∞ 2 k a / 2 2 k b / 3 2 k n / 6 = C 1 / 6 ( 2 n − 1 ) ∑ k = 0 ∞ ( 2 ( 3 a + 2 b + n ) / 6 ) k < ∞ , \begin{aligned}
\int_{B\p{0,1}^\comp} \abs{f\p{x}g\p{x}} \,\diff{x}
&= \sum_{k=0}^\infty \int_{\set{2^k \leq \abs{x} \leq 2^{k+1}}} \abs{f\p{x}g\p{x}} \,\diff{x} \\
&\leq \sum_{k=0}^\infty \p{\int_{\set{2^k \leq \abs{x} \leq 2^{k+1}}} \abs{f\p{x}}^2 \,\diff{x}}^{1/2} \p{\int_{\set{2^k \leq \abs{x} \leq 2^{k+1}}} \abs{f\p{x}}^3 \,\diff{x}}^{1/3} \p{\int_{\set{2^k \leq \abs{x} \leq 2^{k+1}}} \diff{x}}^{1/6} \\
&\leq \sum_{k=0}^\infty 2^{ka/2} 2^{kb/3} \p{m\p{B\p{0, 2^{k+1}}} - m\p{B\p{0, 2^k}}}^{1/6} \\
&= C^{1/6}\p{2^{n} - 1} \sum_{k=0}^\infty 2^{ka/2} 2^{kb/3} 2^{kn/6} \\
&= C^{1/6}\p{2^{n} - 1} \sum_{k=0}^\infty \p{2^{\p{3a+2b+n}/6}}^k \\
&< \infty,
\end{aligned} ∫ B ( 0 , 1 ) c ∣ f ( x ) g ( x ) ∣ d x = k = 0 ∑ ∞ ∫ { 2 k ≤ ∣ x ∣ ≤ 2 k + 1 } ∣ f ( x ) g ( x ) ∣ d x ≤ k = 0 ∑ ∞ ( ∫ { 2 k ≤ ∣ x ∣ ≤ 2 k + 1 } ∣ f ( x ) ∣ 2 d x ) 1/2 ( ∫ { 2 k ≤ ∣ x ∣ ≤ 2 k + 1 } ∣ f ( x ) ∣ 3 d x ) 1/3 ( ∫ { 2 k ≤ ∣ x ∣ ≤ 2 k + 1 } d x ) 1/6 ≤ k = 0 ∑ ∞ 2 ka /2 2 kb /3 ( m ( B ( 0 , 2 k + 1 ) ) − m ( B ( 0 , 2 k ) ) ) 1/6 = C 1/6 ( 2 n − 1 ) k = 0 ∑ ∞ 2 ka /2 2 kb /3 2 kn /6 = C 1/6 ( 2 n − 1 ) k = 0 ∑ ∞ ( 2 ( 3 a + 2 b + n ) /6 ) k < ∞ ,
since 3 a + 2 b + n < 0 3a + 2b + n < 0 3 a + 2 b + n < 0 by assumption. Thus, f g ∈ L 1 ( R n ) fg \in L^1\p{\R^n} f g ∈ L 1 ( R n ) , as required.