Spring 2015 - Problem 2

Lp spaces

Let fLloc2(Rn)f \in L^2_{\mathrm{loc}}\p{\R^n}, gLloc3(Rn)g \in L^3_{\mathrm{loc}}\p{\R^n}. Assume that for all real r1r \geq 1, we have

{rx2r}f(x)2dxra,{rx2r}g(x)3dxrb.\int_{\set{r \leq \abs{x} \leq 2r}} \abs{f\p{x}}^2 \,\diff{x} \leq r^a, \quad \int_{\set{r \leq \abs{x} \leq 2r}} \abs{g\p{x}}^3 \,\diff{x} \leq r^b.

Here a,bRa, b \in \R are such that 3a+2b+n<03a + 2b + n < 0. Show that fgL1(Rn)fg \in L^1\p{\R^n}.

Solution.

Observe that 12+13+16=1\frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1. Hence, by Hölder's inequality,

B(0,1)f(x)g(x)dxfχB(0,1)L2gχB(0,1)L3χB(0,1)L6fχB(0,1)L2gχB(0,1)L3m(B(0,1))1/6<,\begin{aligned} \int_{B\p{0,1}} \abs{f\p{x}g\p{x}} \,\diff{x} &\leq \norm{f\chi_{B\p{0,1}}}_{L^2} \norm{g\chi_{B\p{0,1}}}_{L^3} \norm{\chi_{B\p{0,1}}}_{L^6} \\ &\leq \norm{f\chi_{B\p{0,1}}}_{L^2} \norm{g\chi_{B\p{0,1}}}_{L^3} m\p{B\p{0,1}}^{1/6} \\ &< \infty, \end{aligned}

since fLloc2(Rn)f \in L^2_{\mathrm{loc}}\p{\R^n} and gLloc3(Rn)g \in L^3_{\mathrm{loc}}\p{\R^n}. Hence, it remains to consider the integral on B(0,1)cB\p{0, 1}^\comp. First, recall that m(B(0,r))=Crnm\p{B\p{0, r}} = Cr^n for some constant C>0C > 0 depending only on the dimension nn. Thus, applying Hölder again,

B(0,1)cf(x)g(x)dx=k=0{2kx2k+1}f(x)g(x)dxk=0({2kx2k+1}f(x)2dx)1/2({2kx2k+1}f(x)3dx)1/3({2kx2k+1}dx)1/6k=02ka/22kb/3(m(B(0,2k+1))m(B(0,2k)))1/6=C1/6(2n1)k=02ka/22kb/32kn/6=C1/6(2n1)k=0(2(3a+2b+n)/6)k<,\begin{aligned} \int_{B\p{0,1}^\comp} \abs{f\p{x}g\p{x}} \,\diff{x} &= \sum_{k=0}^\infty \int_{\set{2^k \leq \abs{x} \leq 2^{k+1}}} \abs{f\p{x}g\p{x}} \,\diff{x} \\ &\leq \sum_{k=0}^\infty \p{\int_{\set{2^k \leq \abs{x} \leq 2^{k+1}}} \abs{f\p{x}}^2 \,\diff{x}}^{1/2} \p{\int_{\set{2^k \leq \abs{x} \leq 2^{k+1}}} \abs{f\p{x}}^3 \,\diff{x}}^{1/3} \p{\int_{\set{2^k \leq \abs{x} \leq 2^{k+1}}} \diff{x}}^{1/6} \\ &\leq \sum_{k=0}^\infty 2^{ka/2} 2^{kb/3} \p{m\p{B\p{0, 2^{k+1}}} - m\p{B\p{0, 2^k}}}^{1/6} \\ &= C^{1/6}\p{2^{n} - 1} \sum_{k=0}^\infty 2^{ka/2} 2^{kb/3} 2^{kn/6} \\ &= C^{1/6}\p{2^{n} - 1} \sum_{k=0}^\infty \p{2^{\p{3a+2b+n}/6}}^k \\ &< \infty, \end{aligned}

since 3a+2b+n<03a + 2b + n < 0 by assumption. Thus, fgL1(Rn)fg \in L^1\p{\R^n}, as required.