Solution.
First, let f f f be a step function, i.e., f = ∑ j = 1 N a j χ I j f = \sum_{j=1}^N a_j \chi_{I_j} f = ∑ j = 1 N a j χ I j , where the I j I_j I j are disjoint closed intervals and have finite measure. Let δ = min { d ( I j , I k ) ∣ j ≠ k } > 0 \delta = \min\,\set{d\p{I_j, I_k} \mid j \neq k} > 0 δ = min { d ( I j , I k ) ∣ j = k } > 0 , since there are only finitely many of these. Hence, if 1 n < δ \frac{1}{n} < \delta n 1 < δ , then each [ k n , k + 1 n ] \br{\frac{k}{n}, \frac{k+1}{n}} [ n k , n k + 1 ] intersects at most one I k I_k I k . Hence,
∣ ∫ k / n ( k + 1 ) / n f ( x ) d x ∣ = ∫ k / n ( k + 1 ) / n ∣ f ( x ) ∣ d x , \abs{\int_{k/n}^{\p{k+1}/n} f\p{x} \,\diff{x}}
= \int_{k/n}^{\p{k+1}/n} \abs{f\p{x}} \,\diff{x}, ∣ ∣ ∫ k / n ( k + 1 ) / n f ( x ) d x ∣ ∣ = ∫ k / n ( k + 1 ) / n ∣ f ( x ) ∣ d x ,
since on each of these intervals, f f f is either non-negative or non-positive. Consequently, we get
∑ k = − n 2 n 2 ∣ ∫ k / n ( k + 1 ) / n f ( x ) d x ∣ = ∑ k = − n 2 n 2 ∫ k / n ( k + 1 ) / n ∣ f ( x ) ∣ d x = ∫ − n n + 1 n ∣ f ( x ) ∣ d x → n → ∞ ∫ ∣ f ( x ) ∣ d x \begin{aligned}
\sum_{k=-n^2}^{n^2} \abs{\int_{k/n}^{\p{k+1}/n} f\p{x} \,\diff{x}}
&= \sum_{k=-n^2}^{n^2} \int_{k/n}^{\p{k+1}/n} \abs{f\p{x}} \,\diff{x} \\
&= \int_{-n}^{n + \frac{1}{n}} \abs{f\p{x}} \,\diff{x}
\xrightarrow{n\to\infty} \int \abs{f\p{x}} \,\diff{x}
\end{aligned} k = − n 2 ∑ n 2 ∣ ∣ ∫ k / n ( k + 1 ) / n f ( x ) d x ∣ ∣ = k = − n 2 ∑ n 2 ∫ k / n ( k + 1 ) / n ∣ f ( x ) ∣ d x = ∫ − n n + n 1 ∣ f ( x ) ∣ d x n → ∞ ∫ ∣ f ( x ) ∣ d x
by monotone convergence. Thus, the result holds for step functions. For a general f ∈ L 1 ( R ) f \in L^1\p{\R} f ∈ L 1 ( R ) , let ε > 0 \epsilon > 0 ε > 0 and recall that step functions are dense in L 1 ( R ) L^1\p{\R} L 1 ( R ) , so there exists a step function g g g with ∥ f − g ∥ L 1 < ε \norm{f - g}_{L^1} < \epsilon ∥ f − g ∥ L 1 < ε . Write
A n ( f ) = ∑ k = − n 2 n 2 ∣ ∫ k / n ( k + 1 ) / n f ( x ) d x ∣ A_n\p{f} = \sum_{k=-n^2}^{n^2} \abs{\int_{k/n}^{\p{k+1}/n} f\p{x} \,\diff{x}} A n ( f ) = k = − n 2 ∑ n 2 ∣ ∣ ∫ k / n ( k + 1 ) / n f ( x ) d x ∣ ∣
which gives
A n ( f ) ≤ ∑ k = − n 2 n 2 ∫ k / n ( k + 1 ) / n ∣ f ( x ) ∣ d x = ∫ − n n + 1 n ∣ f ( x ) ∣ d x ≤ ∥ f ∥ L 1 . A_n\p{f}
\leq \sum_{k=-n^2}^{n^2} \int_{k/n}^{\p{k+1}/n} \abs{f\p{x}} \,\diff{x}
= \int_{-n}^{n + \frac{1}{n}} \abs{f\p{x}} \,\diff{x}
\leq \norm{f}_{L^1}. A n ( f ) ≤ k = − n 2 ∑ n 2 ∫ k / n ( k + 1 ) / n ∣ f ( x ) ∣ d x = ∫ − n n + n 1 ∣ f ( x ) ∣ d x ≤ ∥ f ∥ L 1 .
Hence,
∣ A n ( f ) − ∥ f ∥ L 1 ∣ ≤ ∣ A n ( f ) − A n ( g ) ∣ + ∣ A n ( g ) − ∥ g ∥ L 1 ∣ + ∣ ∥ f ∥ L 1 − ∥ g ∥ L 1 ∣ ≤ 2 ∥ f − g ∥ L 1 + ∣ A n ( g ) − ∥ g ∥ L 1 ∣ . \begin{aligned}
\abs{A_n\p{f} - \norm{f}_{L^1}}
&\leq \abs{A_n\p{f} - A_n\p{g}} + \abs{A_n\p{g} - \norm{g}_{L^1}} + \abs{\norm{f}_{L^1} - \norm{g}_{L^1}} \\
&\leq 2\norm{f - g}_{L^1} + \abs{A_n\p{g} - \norm{g}_{L^1}}.
\end{aligned} ∣ A n ( f ) − ∥ f ∥ L 1 ∣ ≤ ∣ A n ( f ) − A n ( g ) ∣ + ∣ A n ( g ) − ∥ g ∥ L 1 ∣ + ∣ ∥ f ∥ L 1 − ∥ g ∥ L 1 ∣ ≤ 2 ∥ f − g ∥ L 1 + ∣ A n ( g ) − ∥ g ∥ L 1 ∣ .
Since the claim is true for g g g , taking lim sup n → ∞ \displaystyle\limsup_{n\to\infty} n → ∞ lim sup , we end up with
lim sup n → ∞ ∣ A n ( f ) − ∥ f ∥ L 1 ∣ ≤ 2 ∥ f − g ∥ L 1 ≤ 2 ε , \limsup_{n\to\infty}\,\abs{A_n\p{f} - \norm{f}_{L^1}}
\leq 2\norm{f - g}_{L^1}
\leq 2\epsilon, n → ∞ lim sup ∣ A n ( f ) − ∥ f ∥ L 1 ∣ ≤ 2 ∥ f − g ∥ L 1 ≤ 2 ε ,
which completes the proof.