Spring 2015 - Problem 1

density argument, Lp spaces

Let fL1(R)f \in L^1\p{\R}. Show that

limnk=n2n2k/n(k+1)/nf(x)dx=f(x)dx.\lim_{n\to\infty} \sum_{k=-n^2}^{n^2} \abs{\int_{k/n}^{\p{k+1}/n} f\p{x} \,\diff{x}} = \int \abs{f\p{x}} \,\diff{x}.
Solution.

First, let ff be a step function, i.e., f=j=1NajχIjf = \sum_{j=1}^N a_j \chi_{I_j}, where the IjI_j are disjoint closed intervals and have finite measure. Let δ=min{d(Ij,Ik)jk}>0\delta = \min\,\set{d\p{I_j, I_k} \mid j \neq k} > 0, since there are only finitely many of these. Hence, if 1n<δ\frac{1}{n} < \delta, then each [kn,k+1n]\br{\frac{k}{n}, \frac{k+1}{n}} intersects at most one IkI_k. Hence,

k/n(k+1)/nf(x)dx=k/n(k+1)/nf(x)dx,\abs{\int_{k/n}^{\p{k+1}/n} f\p{x} \,\diff{x}} = \int_{k/n}^{\p{k+1}/n} \abs{f\p{x}} \,\diff{x},

since on each of these intervals, ff is either non-negative or non-positive. Consequently, we get

k=n2n2k/n(k+1)/nf(x)dx=k=n2n2k/n(k+1)/nf(x)dx=nn+1nf(x)dxnf(x)dx\begin{aligned} \sum_{k=-n^2}^{n^2} \abs{\int_{k/n}^{\p{k+1}/n} f\p{x} \,\diff{x}} &= \sum_{k=-n^2}^{n^2} \int_{k/n}^{\p{k+1}/n} \abs{f\p{x}} \,\diff{x} \\ &= \int_{-n}^{n + \frac{1}{n}} \abs{f\p{x}} \,\diff{x} \xrightarrow{n\to\infty} \int \abs{f\p{x}} \,\diff{x} \end{aligned}

by monotone convergence. Thus, the result holds for step functions. For a general fL1(R)f \in L^1\p{\R}, let ε>0\epsilon > 0 and recall that step functions are dense in L1(R)L^1\p{\R}, so there exists a step function gg with fgL1<ε\norm{f - g}_{L^1} < \epsilon. Write

An(f)=k=n2n2k/n(k+1)/nf(x)dxA_n\p{f} = \sum_{k=-n^2}^{n^2} \abs{\int_{k/n}^{\p{k+1}/n} f\p{x} \,\diff{x}}

which gives

An(f)k=n2n2k/n(k+1)/nf(x)dx=nn+1nf(x)dxfL1.A_n\p{f} \leq \sum_{k=-n^2}^{n^2} \int_{k/n}^{\p{k+1}/n} \abs{f\p{x}} \,\diff{x} = \int_{-n}^{n + \frac{1}{n}} \abs{f\p{x}} \,\diff{x} \leq \norm{f}_{L^1}.

Hence,

An(f)fL1An(f)An(g)+An(g)gL1+fL1gL12fgL1+An(g)gL1.\begin{aligned} \abs{A_n\p{f} - \norm{f}_{L^1}} &\leq \abs{A_n\p{f} - A_n\p{g}} + \abs{A_n\p{g} - \norm{g}_{L^1}} + \abs{\norm{f}_{L^1} - \norm{g}_{L^1}} \\ &\leq 2\norm{f - g}_{L^1} + \abs{A_n\p{g} - \norm{g}_{L^1}}. \end{aligned}

Since the claim is true for gg, taking lim supn\displaystyle\limsup_{n\to\infty}, we end up with

lim supnAn(f)fL12fgL12ε,\limsup_{n\to\infty}\,\abs{A_n\p{f} - \norm{f}_{L^1}} \leq 2\norm{f - g}_{L^1} \leq 2\epsilon,

which completes the proof.