Solution.
Let R > 0 R > 0 R > 0 and K = B ( 0 , R ) ‾ K = \cl{B\p{0, R}} K = B ( 0 , R ) . Then for z ∈ B ( 0 , 1 + R ) ‾ z \in \cl{B\p{0, 1+R}} z ∈ B ( 0 , 1 + R ) , we get e ∣ z ∣ 2 ≤ e ( 1 + R ) 2 e^{\abs{z}^2} \leq e^{\p{1+R}^2} e ∣ z ∣ 2 ≤ e ( 1 + R ) 2 and so
∬ B ( 0 , 1 + R ) ‾ ∣ f j ( z ) ∣ 2 d x d y = ∬ B ( 0 , 1 + R ) ‾ ∣ f j ( z ) ∣ 2 e − ∣ z ∣ 2 e ∣ z ∣ 2 d y ≤ C e R 2 . \begin{aligned}
\iint_{\cl{B\p{0,1+R}}} \abs{f_j\p{z}}^2 \,\diff{x} \,\diff{y}
&= \iint_{\cl{B\p{0,1+R}}} \abs{f_j\p{z}}^2 e^{-\abs{z}^2} e^{\abs{z}^2} \,\diff{y} \\
&\leq Ce^{R^2}.
\end{aligned} ∬ B ( 0 , 1 + R ) ∣ f j ( z ) ∣ 2 d x d y = ∬ B ( 0 , 1 + R ) ∣ f j ( z ) ∣ 2 e − ∣ z ∣ 2 e ∣ z ∣ 2 d y ≤ C e R 2 .
Notice that for any z ∈ K z \in K z ∈ K , we have B ( z , 1 ) ‾ ⊆ B ( 0 , 1 + R ) ‾ \cl{B\p{z, 1}} \subseteq \cl{B\p{0, 1+R}} B ( z , 1 ) ⊆ B ( 0 , 1 + R ) , so by the mean value property,
∣ f j ( z ) ∣ = 1 π ∣ ∬ B ( z , 1 ) f j ( x + i y ) d x d y ∣ ≤ 1 π ∬ B ( 0 , 1 + R ) ‾ ∣ f j ( x + i y ) ∣ d x d y ≤ 1 π ( ∬ B ( 0 , 1 + R ) ‾ ∣ f j ( x + i y ) ∣ 2 d x d y ) 1 / 2 m ( B ( z , 1 ) ) 1 / 2 ≤ m ( D ) 1 / 2 π C e R 2 . \begin{aligned}
\abs{f_j\p{z}}
&= \frac{1}{\pi} \abs{\iint_{B\p{z,1}} f_j\p{x + iy} \,\diff{x} \,\diff{y}} \\
&\leq \frac{1}{\pi} \iint_{\cl{B\p{0,1+R}}} \abs{f_j\p{x + iy}} \,\diff{x} \,\diff{y} \\
&\leq \frac{1}{\pi} \p{\iint_{\cl{B\p{0,1+R}}} \abs{f_j\p{x + iy}}^2 \,\diff{x} \,\diff{y}}^{1/2} m\p{B\p{z, 1}}^{1/2} \\
&\leq \frac{m\p{\D}^{1/2}}{\pi} Ce^{R^2}.
\end{aligned} ∣ f j ( z ) ∣ = π 1 ∣ ∣ ∬ B ( z , 1 ) f j ( x + i y ) d x d y ∣ ∣ ≤ π 1 ∬ B ( 0 , 1 + R ) ∣ f j ( x + i y ) ∣ d x d y ≤ π 1 ( ∬ B ( 0 , 1 + R ) ∣ f j ( x + i y ) ∣ 2 d x d y ) 1/2 m ( B ( z , 1 ) ) 1/2 ≤ π m ( D ) 1/2 C e R 2 .
Thus, { f j } j \set{f_j}_j { f j } j is a normal family, so there exists a subsequence { f j k } k \set{f_{j_k}}_k { f j k } k which converges locally uniformly to an entire function f f f . By Fatou's lemma, f f f satisfies
∬ C ∣ f ( z ) ∣ 2 e − ∣ z ∣ 2 d x d y ≤ lim inf k → ∞ ∬ C ∣ f j k ( z ) ∣ 2 e − ∣ z ∣ 2 d x d y ≤ C . \iint_\C \abs{f\p{z}}^2 e^{-\abs{z}^2} \,\diff{x} \,\diff{y}
\leq \liminf_{k\to\infty} \iint_\C \abs{f_{j_k}\p{z}}^2 e^{-\abs{z}^2} \,\diff{x} \,\diff{y}
\leq C. ∬ C ∣ f ( z ) ∣ 2 e − ∣ z ∣ 2 d x d y ≤ k → ∞ lim inf ∬ C ∣ f j k ( z ) ∣ 2 e − ∣ z ∣ 2 d x d y ≤ C .
To complete the proof, let ε > 0 \epsilon > 0 ε > 0 . If R > 0 R > 0 R > 0 ,
∬ B ( 0 , R ) c ∣ f j k ( z ) − f ( z ) ∣ 2 e − 2 ∣ z ∣ 2 d z ≤ e − R 2 ∬ B ( 0 , R ) c ∣ f j k ( z ) − f ( z ) ∣ 2 e − ∣ z ∣ 2 d z ≤ 2 C e − R 2 , \begin{aligned}
\iint_{B\p{0,R}^\comp} \abs{f_{j_k}\p{z} - f\p{z}}^2 e^{-2\abs{z}^2} \,\diff{z}
&\leq e^{-R^2} \iint_{B\p{0,R}^\comp} \abs{f_{j_k}\p{z} - f\p{z}}^2 e^{-\abs{z}^2} \,\diff{z} \\
&\leq 2Ce^{-R^2},
\end{aligned} ∬ B ( 0 , R ) c ∣ f j k ( z ) − f ( z ) ∣ 2 e − 2 ∣ z ∣ 2 d z ≤ e − R 2 ∬ B ( 0 , R ) c ∣ f j k ( z ) − f ( z ) ∣ 2 e − ∣ z ∣ 2 d z ≤ 2 C e − R 2 ,
so these go to 0 0 0 as R → ∞ R \to \infty R → ∞ , uniformly in k k k . Let R R R be large enough so that
∬ B ( 0 , R ) c ∣ f j k ( z ) − f ( z ) ∣ 2 e − 2 ∣ z ∣ 2 d z < ε . \iint_{B\p{0,R}^\comp} \abs{f_{j_k}\p{z} - f\p{z}}^2 e^{-2\abs{z}^2} \,\diff{z} < \epsilon. ∬ B ( 0 , R ) c ∣ f j k ( z ) − f ( z ) ∣ 2 e − 2 ∣ z ∣ 2 d z < ε .
Thus, because B ( 0 , R ) ‾ \cl{B\p{0, R}} B ( 0 , R ) is compact, there exists N ∈ N N \in \N N ∈ N so that ∣ f j k ( z ) − f ( z ) ∣ < ε \abs{f_{j_k}\p{z} - f\p{z}} < \epsilon ∣ f j k ( z ) − f ( z ) ∣ < ε for all z ∈ B ( 0 , R ) ‾ z \in \cl{B\p{0, R}} z ∈ B ( 0 , R ) , for all k ≥ N k \geq N k ≥ N . Hence,
∬ C ∣ f j k ( z ) − f ( z ) ∣ 2 e − 2 ∣ z ∣ 2 d x d y = ∬ B ( 0 , R ) ∣ f j k ( z ) − f ( z ) ∣ 2 e − 2 ∣ z ∣ 2 d x d y + ∬ B ( 0 , R ) c ∣ f j k ( z ) − f ( z ) ∣ 2 e − 2 ∣ z ∣ 2 d x d y ≤ ε 2 ∫ 0 R ∫ 0 2 π r e − 2 r 2 θ d r + ε = π ε 2 ( 1 − e − 2 R 2 ) 4 + ε ≤ π ε 2 4 + ε , \begin{aligned}
\iint_\C \abs{f_{j_k}\p{z} - f\p{z}}^2 e^{-2\abs{z}^2} \,\diff{x} \,\diff{y}
&= \iint_{B\p{0,R}} \abs{f_{j_k}\p{z} - f\p{z}}^2 e^{-2\abs{z}^2} \,\diff{x} \,\diff{y} + \iint_{B\p{0,R}^\comp} \abs{f_{j_k}\p{z} - f\p{z}}^2 e^{-2\abs{z}^2} \,\diff{x} \,\diff{y} \\
&\leq \epsilon^2 \int_0^R \int_0^{2\pi} re^{-2r^2} \,\theta \,\diff{r} + \epsilon \\
&= \frac{\pi\epsilon^2\p{1 - e^{-2R^2}}}{4} + \epsilon \\
&\leq \frac{\pi\epsilon^2}{4} + \epsilon,
\end{aligned} ∬ C ∣ f j k ( z ) − f ( z ) ∣ 2 e − 2 ∣ z ∣ 2 d x d y = ∬ B ( 0 , R ) ∣ f j k ( z ) − f ( z ) ∣ 2 e − 2 ∣ z ∣ 2 d x d y + ∬ B ( 0 , R ) c ∣ f j k ( z ) − f ( z ) ∣ 2 e − 2 ∣ z ∣ 2 d x d y ≤ ε 2 ∫ 0 R ∫ 0 2 π r e − 2 r 2 θ d r + ε = 4 π ε 2 ( 1 − e − 2 R 2 ) + ε ≤ 4 π ε 2 + ε ,
which completes the proof.