Fall 2015 - Problem 9

normal families

Let {fj}j\set{f_j}_j be a sequence of entire functions such that, writing z=x+iyz = x + iy, we have

Cfj(z)2ez2dxdyC,j=1,2,,\iint_\C \abs{f_j\p{z}}^2 e^{-\abs{z}^2} \,\diff{x} \,\diff{y} \leq C, \quad j = 1, 2, \ldots,

for some constant C>0C > 0. Show that there exists a subsequence {fjk}k\set{f_{j_k}}_k and an entire function ff such that we have

Cfjk(z)f(z)2e2z2dxdy0,k.\iint_\C \abs{f_{j_k}\p{z} - f\p{z}}^2 e^{-2\abs{z}^2} \,\diff{x} \,\diff{y} \to 0, \quad k \to \infty.
Solution.

Let R>0R > 0 and K=B(0,R)K = \cl{B\p{0, R}}. Then for zB(0,1+R)z \in \cl{B\p{0, 1+R}}, we get ez2e(1+R)2e^{\abs{z}^2} \leq e^{\p{1+R}^2} and so

B(0,1+R)fj(z)2dxdy=B(0,1+R)fj(z)2ez2ez2dyCeR2.\begin{aligned} \iint_{\cl{B\p{0,1+R}}} \abs{f_j\p{z}}^2 \,\diff{x} \,\diff{y} &= \iint_{\cl{B\p{0,1+R}}} \abs{f_j\p{z}}^2 e^{-\abs{z}^2} e^{\abs{z}^2} \,\diff{y} \\ &\leq Ce^{R^2}. \end{aligned}

Notice that for any zKz \in K, we have B(z,1)B(0,1+R)\cl{B\p{z, 1}} \subseteq \cl{B\p{0, 1+R}}, so by the mean value property,

fj(z)=1πB(z,1)fj(x+iy)dxdy1πB(0,1+R)fj(x+iy)dxdy1π(B(0,1+R)fj(x+iy)2dxdy)1/2m(B(z,1))1/2m(D)1/2πCeR2.\begin{aligned} \abs{f_j\p{z}} &= \frac{1}{\pi} \abs{\iint_{B\p{z,1}} f_j\p{x + iy} \,\diff{x} \,\diff{y}} \\ &\leq \frac{1}{\pi} \iint_{\cl{B\p{0,1+R}}} \abs{f_j\p{x + iy}} \,\diff{x} \,\diff{y} \\ &\leq \frac{1}{\pi} \p{\iint_{\cl{B\p{0,1+R}}} \abs{f_j\p{x + iy}}^2 \,\diff{x} \,\diff{y}}^{1/2} m\p{B\p{z, 1}}^{1/2} \\ &\leq \frac{m\p{\D}^{1/2}}{\pi} Ce^{R^2}. \end{aligned}

Thus, {fj}j\set{f_j}_j is a normal family, so there exists a subsequence {fjk}k\set{f_{j_k}}_k which converges locally uniformly to an entire function ff. By Fatou's lemma, ff satisfies

Cf(z)2ez2dxdylim infkCfjk(z)2ez2dxdyC.\iint_\C \abs{f\p{z}}^2 e^{-\abs{z}^2} \,\diff{x} \,\diff{y} \leq \liminf_{k\to\infty} \iint_\C \abs{f_{j_k}\p{z}}^2 e^{-\abs{z}^2} \,\diff{x} \,\diff{y} \leq C.

To complete the proof, let ε>0\epsilon > 0. If R>0R > 0,

B(0,R)cfjk(z)f(z)2e2z2dzeR2B(0,R)cfjk(z)f(z)2ez2dz2CeR2,\begin{aligned} \iint_{B\p{0,R}^\comp} \abs{f_{j_k}\p{z} - f\p{z}}^2 e^{-2\abs{z}^2} \,\diff{z} &\leq e^{-R^2} \iint_{B\p{0,R}^\comp} \abs{f_{j_k}\p{z} - f\p{z}}^2 e^{-\abs{z}^2} \,\diff{z} \\ &\leq 2Ce^{-R^2}, \end{aligned}

so these go to 00 as RR \to \infty, uniformly in kk. Let RR be large enough so that

B(0,R)cfjk(z)f(z)2e2z2dz<ε.\iint_{B\p{0,R}^\comp} \abs{f_{j_k}\p{z} - f\p{z}}^2 e^{-2\abs{z}^2} \,\diff{z} < \epsilon.

Thus, because B(0,R)\cl{B\p{0, R}} is compact, there exists NNN \in \N so that fjk(z)f(z)<ε\abs{f_{j_k}\p{z} - f\p{z}} < \epsilon for all zB(0,R)z \in \cl{B\p{0, R}}, for all kNk \geq N. Hence,

Cfjk(z)f(z)2e2z2dxdy=B(0,R)fjk(z)f(z)2e2z2dxdy+B(0,R)cfjk(z)f(z)2e2z2dxdyε20R02πre2r2θdr+ε=πε2(1e2R2)4+επε24+ε,\begin{aligned} \iint_\C \abs{f_{j_k}\p{z} - f\p{z}}^2 e^{-2\abs{z}^2} \,\diff{x} \,\diff{y} &= \iint_{B\p{0,R}} \abs{f_{j_k}\p{z} - f\p{z}}^2 e^{-2\abs{z}^2} \,\diff{x} \,\diff{y} + \iint_{B\p{0,R}^\comp} \abs{f_{j_k}\p{z} - f\p{z}}^2 e^{-2\abs{z}^2} \,\diff{x} \,\diff{y} \\ &\leq \epsilon^2 \int_0^R \int_0^{2\pi} re^{-2r^2} \,\theta \,\diff{r} + \epsilon \\ &= \frac{\pi\epsilon^2\p{1 - e^{-2R^2}}}{4} + \epsilon \\ &\leq \frac{\pi\epsilon^2}{4} + \epsilon, \end{aligned}

which completes the proof.