Fall 2015 - Problem 6

Fourier analysis

Let uL2(Rd)u \in L^2\p{\R^d} and let us say that uH1/2(Rd)u \in H^{1/2}\p{\R^d} (a Sobolev space) if

(1+ξ1/2)u^(ξ)L2(Rd).\p{1 + \abs{\xi}^{1/2}} \hat{u}\p{\xi} \in L^2\p{\R^d}.

Here u^\hat{u} is the Fourier transform of uu. Show that uH1/2(Rd)u \in H^{1/2}\p{\R^d} if and only if

u(x+y)u(x)2yd+1dxdy<.\iint \frac{\abs{u\p{x + y} - u\p{x}}^2}{\abs{y}^{d+1}} \,\diff{x} \,\diff{y} < \infty.
Solution.

First, recall that

u^(ξ)=1(2π)d/2Rdeiξxu(x)dx,\hat{u}\p{\xi} = \frac{1}{\p{2\pi}^{d/2}} \int_{\R^d} e^{-i\xi \cdot x} u\p{x} \,\diff{x},

and by the change of variables xx+yx \mapsto x + y, we have u^(ξ)=eiξyu^y(ξ)\hat{u}\p{\xi} = e^{-i\xi \cdot y} \hat{u}_y\p{\xi}, where uy(x)=u(x+y)u_y\p{x} = u\p{x + y}.

Suppose uH1/2(Rd)u \in H^{1/2}\p{\R^d}. By Plancherel,

u(x+y)u(x)2yd+1dxdy=Rd1yd+1Rdeiξyu^(ξ)u^(ξ)2dξdy=Rdu^(ξ)2Rdeiξy12yd+1dydξ,\begin{aligned} \iint \frac{\abs{u\p{x + y} - u\p{x}}^2}{\abs{y}^{d+1}} \,\diff{x} \,\diff{y} &= \int_{\R^d} \frac{1}{\abs{y}^{d+1}} \int_{\R^d} \abs{e^{i\xi \cdot y} \hat{u}\p{\xi} - \hat{u}\p{\xi}}^2 \,\diff\xi \,\diff{y} \\ &= \int_{\R^d} \abs{\hat{u}\p{\xi}}^2 \int_{\R^d} \frac{\abs{e^{i\xi \cdot y} - 1}^2}{\abs{y}^{d+1}} \,\diff{y} \,\diff\xi, \end{aligned}

by Fubini-Tonelli (everything is non-negative). It remains to establish bounds for the inner integral.

"    \implies"

Note that because the Plancherel transform is an isometry, it follows that u^(ξ)L2(Rd)\hat{u}\p{\xi} \in L^2\p{\R^d}, so

ξ1/2u^(ξ)=[(1+ξ1/2)u^(ξ)]u^(ξ)L2(Rd).\abs{\xi}^{1/2} \hat{u}\p{\xi} = \br{\p{1 + \abs{\xi}^{1/2}} \hat{u}\p{\xi}} - \hat{u}\p{\xi} \in L^2\p{\R^d}.

By the fundamental theorem of calculus,

ex1=0xetdtxex.\abs{e^x - 1} = \abs{\int_0^x -e^t \,\diff{t}} \leq \abs{x}e^x.

Thus, on x1\abs{x} \leq 1, we have ex1Cx\abs{e^x - 1} \leq C\abs{x}. If ξy1\abs{\xi}\abs{y} \leq 1, then by Cauchy-Schwarz, ξy1\abs{\xi \cdot y} \leq 1, so

Rdeiξy12yd+1dy=C2{ξy1}ξy2yd+1dy+4{ξy1}1yd+1dy=C2ξ201/ξSd1dσdr+41/ξSd11r2dσdrC2σ(Sd1)ξ+4σ(Sd1)ξ=Aξ,\begin{aligned} \int_{\R^d} \frac{\abs{e^{i\xi \cdot y} - 1}^2}{\abs{y}^{d+1}} \,\diff{y} &= C^2 \int_{\set{\abs{\xi}\abs{y} \leq 1}} \frac{\abs{\xi \cdot y}^2}{\abs{y}^{d+1}} \,\diff{y} + 4 \int_{\set{\abs{\xi}\abs{y} \geq 1}} \frac{1}{\abs{y}^{d+1}} \,\diff{y} \\ &= C^2\abs{\xi}^2 \int_0^{1/\abs{\xi}} \int_{S^{d-1}} \,\diff\sigma \,\diff{r} + 4 \int_{1/\abs{\xi}}^\infty \int_{S^{d-1}} \frac{1}{r^2} \,\diff\sigma \,\diff{r} \\ &\leq C^2 \sigma\p{S^{d-1}} \abs{\xi} + 4 \sigma\p{S^{d-1}} \abs{\xi} \\ &= A\abs{\xi}, \end{aligned}

and so

u(x+y)u(x)2yd+1dxdyARdξu^(ξ)2dξ<.\iint \frac{\abs{u\p{x + y} - u\p{x}}^2}{\abs{y}^{d+1}} \,\diff{x} \,\diff{y} \leq A \int_{\R^d} \abs{\xi}\abs{\hat{u}\p{\xi}}^2 \,\diff\xi < \infty.

"    \impliedby"

By another application of the fundamental theorem of calculus, we quickly see that

ex1x\abs{e^x - 1} \geq \abs{x}

for all xRx \in \R. Let ASO(d)A \in \SO\p{d} be the rotation which maps ξξ(0,,0,1)=en\frac{\xi}{\abs{\xi}} \mapsto \p{0, \ldots, 0, 1} = e_n. Then for a fixed ξ\xi,

ξAy=ξ(Aξξy)=ξ(eny).\xi \cdot Ay = \abs{\xi}\p{A^\trans\frac{\xi}{\abs{\xi}} \cdot y} = \abs{\xi}\p{e_n \cdot y}.

By continuity of the inner product, there exists an open neighborhood USd1U \subseteq S^{d-1} such that eny12\abs{e_n \cdot y} \geq \frac{1}{2}. Since AA has determinant 11, a change of variables yields

Rdeiξy12yd+1dy{ξy1}ξy2yd+1dy=detA{ξy1}ξAy2yd+1dy=ξ201/ξSd1ens2dσ(s)drξ201/ξU12dσ(s)drCξ.\begin{aligned} \int_{\R^d} \frac{\abs{e^{i\xi \cdot y} - 1}^2}{\abs{y}^{d+1}} \,\diff{y} &\geq \int_{\set{\abs{\xi}\abs{y} \leq 1}} \frac{\abs{\xi \cdot y}^2}{\abs{y}^{d+1}} \,\diff{y} \\ &= \abs{\det{A}} \int_{\set{\abs{\xi}\abs{y} \leq 1}} \frac{\abs{\xi \cdot Ay}^2}{\abs{y}^{d+1}} \,\diff{y} \\ &= \abs{\xi}^2 \int_0^{1/\abs{\xi}} \int_{S^{d-1}} \abs{e_n \cdot s}^2 \,\diff\sigma\p{s} \,\diff{r} \\ &\geq \abs{\xi}^2 \int_0^{1/\abs{\xi}} \int_U \frac{1}{2} \,\diff\sigma\p{s} \,\diff{r} \\ &\geq C \abs{\xi}. \end{aligned}

Indeed, UU does not depend on ξ\xi, so CC is independent of ξ\xi. Finally, we see

CRdξu^(ξ)2dξu(x+y)u(x)2yd+1dxdy<,C \int_{\R^d} \abs{\xi}\abs{\hat{u}\p{\xi}}^2 \,\diff\xi \leq \iint \frac{\abs{u\p{x + y} - u\p{x}}^2}{\abs{y}^{d+1}} \,\diff{x} \,\diff{y} < \infty,

so ξ1/2u^(ξ)L2\abs{\xi}^{1/2}\hat{u}\p{\xi} \in L^2. Since uL2u \in L^2, we automatically have u^L2\hat{u} \in L^2, and so (1+ξ1/2)u^(ξ)L2\p{1 + \abs{\xi}^{1/2}} \hat{u}\p{\xi} \in L^2, which completes the proof.