Solution.
First, recall that
u ^ ( ξ ) = 1 ( 2 π ) d / 2 ∫ R d e − i ξ ⋅ x u ( x ) d x , \hat{u}\p{\xi}
= \frac{1}{\p{2\pi}^{d/2}} \int_{\R^d} e^{-i\xi \cdot x} u\p{x} \,\diff{x}, u ^ ( ξ ) = ( 2 π ) d /2 1 ∫ R d e − i ξ ⋅ x u ( x ) d x ,
and by the change of variables x ↦ x + y x \mapsto x + y x ↦ x + y , we have u ^ ( ξ ) = e − i ξ ⋅ y u ^ y ( ξ ) \hat{u}\p{\xi} = e^{-i\xi \cdot y} \hat{u}_y\p{\xi} u ^ ( ξ ) = e − i ξ ⋅ y u ^ y ( ξ ) , where u y ( x ) = u ( x + y ) u_y\p{x} = u\p{x + y} u y ( x ) = u ( x + y ) .
Suppose u ∈ H 1 / 2 ( R d ) u \in H^{1/2}\p{\R^d} u ∈ H 1/2 ( R d ) . By Plancherel,
∬ ∣ u ( x + y ) − u ( x ) ∣ 2 ∣ y ∣ d + 1 d x d y = ∫ R d 1 ∣ y ∣ d + 1 ∫ R d ∣ e i ξ ⋅ y u ^ ( ξ ) − u ^ ( ξ ) ∣ 2 d ξ d y = ∫ R d ∣ u ^ ( ξ ) ∣ 2 ∫ R d ∣ e i ξ ⋅ y − 1 ∣ 2 ∣ y ∣ d + 1 d y d ξ , \begin{aligned}
\iint \frac{\abs{u\p{x + y} - u\p{x}}^2}{\abs{y}^{d+1}} \,\diff{x} \,\diff{y}
&= \int_{\R^d} \frac{1}{\abs{y}^{d+1}} \int_{\R^d} \abs{e^{i\xi \cdot y} \hat{u}\p{\xi} - \hat{u}\p{\xi}}^2 \,\diff\xi \,\diff{y} \\
&= \int_{\R^d} \abs{\hat{u}\p{\xi}}^2 \int_{\R^d} \frac{\abs{e^{i\xi \cdot y} - 1}^2}{\abs{y}^{d+1}} \,\diff{y} \,\diff\xi,
\end{aligned} ∬ ∣ y ∣ d + 1 ∣ u ( x + y ) − u ( x ) ∣ 2 d x d y = ∫ R d ∣ y ∣ d + 1 1 ∫ R d ∣ ∣ e i ξ ⋅ y u ^ ( ξ ) − u ^ ( ξ ) ∣ ∣ 2 d ξ d y = ∫ R d ∣ u ^ ( ξ ) ∣ 2 ∫ R d ∣ y ∣ d + 1 ∣ ∣ e i ξ ⋅ y − 1 ∣ ∣ 2 d y d ξ ,
by Fubini-Tonelli (everything is non-negative). It remains to establish bounds for the inner integral.
" ⟹ \implies ⟹ "
Note that because the Plancherel transform is an isometry, it follows that u ^ ( ξ ) ∈ L 2 ( R d ) \hat{u}\p{\xi} \in L^2\p{\R^d} u ^ ( ξ ) ∈ L 2 ( R d ) , so
∣ ξ ∣ 1 / 2 u ^ ( ξ ) = [ ( 1 + ∣ ξ ∣ 1 / 2 ) u ^ ( ξ ) ] − u ^ ( ξ ) ∈ L 2 ( R d ) . \abs{\xi}^{1/2} \hat{u}\p{\xi} = \br{\p{1 + \abs{\xi}^{1/2}} \hat{u}\p{\xi}} - \hat{u}\p{\xi} \in L^2\p{\R^d}. ∣ ξ ∣ 1/2 u ^ ( ξ ) = [ ( 1 + ∣ ξ ∣ 1/2 ) u ^ ( ξ ) ] − u ^ ( ξ ) ∈ L 2 ( R d ) .
By the fundamental theorem of calculus,
∣ e x − 1 ∣ = ∣ ∫ 0 x − e t d t ∣ ≤ ∣ x ∣ e x . \abs{e^x - 1}
= \abs{\int_0^x -e^t \,\diff{t}}
\leq \abs{x}e^x. ∣ e x − 1 ∣ = ∣ ∣ ∫ 0 x − e t d t ∣ ∣ ≤ ∣ x ∣ e x .
Thus, on ∣ x ∣ ≤ 1 \abs{x} \leq 1 ∣ x ∣ ≤ 1 , we have ∣ e x − 1 ∣ ≤ C ∣ x ∣ \abs{e^x - 1} \leq C\abs{x} ∣ e x − 1 ∣ ≤ C ∣ x ∣ . If ∣ ξ ∣ ∣ y ∣ ≤ 1 \abs{\xi}\abs{y} \leq 1 ∣ ξ ∣ ∣ y ∣ ≤ 1 , then by Cauchy-Schwarz, ∣ ξ ⋅ y ∣ ≤ 1 \abs{\xi \cdot y} \leq 1 ∣ ξ ⋅ y ∣ ≤ 1 , so
∫ R d ∣ e i ξ ⋅ y − 1 ∣ 2 ∣ y ∣ d + 1 d y = C 2 ∫ { ∣ ξ ∣ ∣ y ∣ ≤ 1 } ∣ ξ ⋅ y ∣ 2 ∣ y ∣ d + 1 d y + 4 ∫ { ∣ ξ ∣ ∣ y ∣ ≥ 1 } 1 ∣ y ∣ d + 1 d y = C 2 ∣ ξ ∣ 2 ∫ 0 1 / ∣ ξ ∣ ∫ S d − 1 d σ d r + 4 ∫ 1 / ∣ ξ ∣ ∞ ∫ S d − 1 1 r 2 d σ d r ≤ C 2 σ ( S d − 1 ) ∣ ξ ∣ + 4 σ ( S d − 1 ) ∣ ξ ∣ = A ∣ ξ ∣ , \begin{aligned}
\int_{\R^d} \frac{\abs{e^{i\xi \cdot y} - 1}^2}{\abs{y}^{d+1}} \,\diff{y}
&= C^2 \int_{\set{\abs{\xi}\abs{y} \leq 1}} \frac{\abs{\xi \cdot y}^2}{\abs{y}^{d+1}} \,\diff{y} + 4 \int_{\set{\abs{\xi}\abs{y} \geq 1}} \frac{1}{\abs{y}^{d+1}} \,\diff{y} \\
&= C^2\abs{\xi}^2 \int_0^{1/\abs{\xi}} \int_{S^{d-1}} \,\diff\sigma \,\diff{r} + 4 \int_{1/\abs{\xi}}^\infty \int_{S^{d-1}} \frac{1}{r^2} \,\diff\sigma \,\diff{r} \\
&\leq C^2 \sigma\p{S^{d-1}} \abs{\xi} + 4 \sigma\p{S^{d-1}} \abs{\xi} \\
&= A\abs{\xi},
\end{aligned} ∫ R d ∣ y ∣ d + 1 ∣ ∣ e i ξ ⋅ y − 1 ∣ ∣ 2 d y = C 2 ∫ { ∣ ξ ∣ ∣ y ∣ ≤ 1 } ∣ y ∣ d + 1 ∣ ξ ⋅ y ∣ 2 d y + 4 ∫ { ∣ ξ ∣ ∣ y ∣ ≥ 1 } ∣ y ∣ d + 1 1 d y = C 2 ∣ ξ ∣ 2 ∫ 0 1/ ∣ ξ ∣ ∫ S d − 1 d σ d r + 4 ∫ 1/ ∣ ξ ∣ ∞ ∫ S d − 1 r 2 1 d σ d r ≤ C 2 σ ( S d − 1 ) ∣ ξ ∣ + 4 σ ( S d − 1 ) ∣ ξ ∣ = A ∣ ξ ∣ ,
and so
∬ ∣ u ( x + y ) − u ( x ) ∣ 2 ∣ y ∣ d + 1 d x d y ≤ A ∫ R d ∣ ξ ∣ ∣ u ^ ( ξ ) ∣ 2 d ξ < ∞ . \iint \frac{\abs{u\p{x + y} - u\p{x}}^2}{\abs{y}^{d+1}} \,\diff{x} \,\diff{y}
\leq A \int_{\R^d} \abs{\xi}\abs{\hat{u}\p{\xi}}^2 \,\diff\xi
< \infty. ∬ ∣ y ∣ d + 1 ∣ u ( x + y ) − u ( x ) ∣ 2 d x d y ≤ A ∫ R d ∣ ξ ∣ ∣ u ^ ( ξ ) ∣ 2 d ξ < ∞.
" ⟸ \impliedby ⟸ "
By another application of the fundamental theorem of calculus, we quickly see that
∣ e x − 1 ∣ ≥ ∣ x ∣ \abs{e^x - 1} \geq \abs{x} ∣ e x − 1 ∣ ≥ ∣ x ∣
for all x ∈ R x \in \R x ∈ R . Let A ∈ SO ( d ) A \in \SO\p{d} A ∈ SO ( d ) be the rotation which maps ξ ∣ ξ ∣ ↦ ( 0 , … , 0 , 1 ) = e n \frac{\xi}{\abs{\xi}} \mapsto \p{0, \ldots, 0, 1} = e_n ∣ ξ ∣ ξ ↦ ( 0 , … , 0 , 1 ) = e n . Then for a fixed ξ \xi ξ ,
ξ ⋅ A y = ∣ ξ ∣ ( A ⊤ ξ ∣ ξ ∣ ⋅ y ) = ∣ ξ ∣ ( e n ⋅ y ) . \xi \cdot Ay
= \abs{\xi}\p{A^\trans\frac{\xi}{\abs{\xi}} \cdot y}
= \abs{\xi}\p{e_n \cdot y}. ξ ⋅ A y = ∣ ξ ∣ ( A ⊤ ∣ ξ ∣ ξ ⋅ y ) = ∣ ξ ∣ ( e n ⋅ y ) .
By continuity of the inner product, there exists an open neighborhood U ⊆ S d − 1 U \subseteq S^{d-1} U ⊆ S d − 1 such that ∣ e n ⋅ y ∣ ≥ 1 2 \abs{e_n \cdot y} \geq \frac{1}{2} ∣ e n ⋅ y ∣ ≥ 2 1 . Since A A A has determinant 1 1 1 , a change of variables yields
∫ R d ∣ e i ξ ⋅ y − 1 ∣ 2 ∣ y ∣ d + 1 d y ≥ ∫ { ∣ ξ ∣ ∣ y ∣ ≤ 1 } ∣ ξ ⋅ y ∣ 2 ∣ y ∣ d + 1 d y = ∣ det A ∣ ∫ { ∣ ξ ∣ ∣ y ∣ ≤ 1 } ∣ ξ ⋅ A y ∣ 2 ∣ y ∣ d + 1 d y = ∣ ξ ∣ 2 ∫ 0 1 / ∣ ξ ∣ ∫ S d − 1 ∣ e n ⋅ s ∣ 2 d σ ( s ) d r ≥ ∣ ξ ∣ 2 ∫ 0 1 / ∣ ξ ∣ ∫ U 1 2 d σ ( s ) d r ≥ C ∣ ξ ∣ . \begin{aligned}
\int_{\R^d} \frac{\abs{e^{i\xi \cdot y} - 1}^2}{\abs{y}^{d+1}} \,\diff{y}
&\geq \int_{\set{\abs{\xi}\abs{y} \leq 1}} \frac{\abs{\xi \cdot y}^2}{\abs{y}^{d+1}} \,\diff{y} \\
&= \abs{\det{A}} \int_{\set{\abs{\xi}\abs{y} \leq 1}} \frac{\abs{\xi \cdot Ay}^2}{\abs{y}^{d+1}} \,\diff{y} \\
&= \abs{\xi}^2 \int_0^{1/\abs{\xi}} \int_{S^{d-1}} \abs{e_n \cdot s}^2 \,\diff\sigma\p{s} \,\diff{r} \\
&\geq \abs{\xi}^2 \int_0^{1/\abs{\xi}} \int_U \frac{1}{2} \,\diff\sigma\p{s} \,\diff{r} \\
&\geq C \abs{\xi}.
\end{aligned} ∫ R d ∣ y ∣ d + 1 ∣ ∣ e i ξ ⋅ y − 1 ∣ ∣ 2 d y ≥ ∫ { ∣ ξ ∣ ∣ y ∣ ≤ 1 } ∣ y ∣ d + 1 ∣ ξ ⋅ y ∣ 2 d y = ∣ det A ∣ ∫ { ∣ ξ ∣ ∣ y ∣ ≤ 1 } ∣ y ∣ d + 1 ∣ ξ ⋅ A y ∣ 2 d y = ∣ ξ ∣ 2 ∫ 0 1/ ∣ ξ ∣ ∫ S d − 1 ∣ e n ⋅ s ∣ 2 d σ ( s ) d r ≥ ∣ ξ ∣ 2 ∫ 0 1/ ∣ ξ ∣ ∫ U 2 1 d σ ( s ) d r ≥ C ∣ ξ ∣ .
Indeed, U U U does not depend on ξ \xi ξ , so C C C is independent of ξ \xi ξ . Finally, we see
C ∫ R d ∣ ξ ∣ ∣ u ^ ( ξ ) ∣ 2 d ξ ≤ ∬ ∣ u ( x + y ) − u ( x ) ∣ 2 ∣ y ∣ d + 1 d x d y < ∞ , C \int_{\R^d} \abs{\xi}\abs{\hat{u}\p{\xi}}^2 \,\diff\xi
\leq \iint \frac{\abs{u\p{x + y} - u\p{x}}^2}{\abs{y}^{d+1}} \,\diff{x} \,\diff{y}
< \infty, C ∫ R d ∣ ξ ∣ ∣ u ^ ( ξ ) ∣ 2 d ξ ≤ ∬ ∣ y ∣ d + 1 ∣ u ( x + y ) − u ( x ) ∣ 2 d x d y < ∞ ,
so ∣ ξ ∣ 1 / 2 u ^ ( ξ ) ∈ L 2 \abs{\xi}^{1/2}\hat{u}\p{\xi} \in L^2 ∣ ξ ∣ 1/2 u ^ ( ξ ) ∈ L 2 . Since u ∈ L 2 u \in L^2 u ∈ L 2 , we automatically have u ^ ∈ L 2 \hat{u} \in L^2 u ^ ∈ L 2 , and so ( 1 + ∣ ξ ∣ 1 / 2 ) u ^ ( ξ ) ∈ L 2 \p{1 + \abs{\xi}^{1/2}} \hat{u}\p{\xi} \in L^2 ( 1 + ∣ ξ ∣ 1/2 ) u ^ ( ξ ) ∈ L 2 , which completes the proof.