Fall 2015 - Problem 4

Hilbert spaces

Let H\mathcal{H} be a separable infinite-dimensional Hilbert space and assume that {en}\set{e_n} is an orthonormal system in H\mathcal{H}. Let {fn}n\set{f_n}_n be another orthonormal system which is complete, i.e., the closure of the span of the {fn}n\set{f_n}_n is all of H\mathcal{H}.

  1. Show that if n=1fnen2<1\sum_{n=1}^\infty \norm{f_n - e_n}^2 < 1, then the orthonormal system {en}n\set{e_n}_n is also complete.
  2. Assume that we only have n=1fnen2<\sum_{n=1}^\infty \norm{f_n - e_n}^2 < \infty. Prove that it is still true that {en}n\set{e_n}_n is complete.
Solution.
  1. Let xHx \in \mathcal{H} be such that x,en=0\inner{x, e_n} = 0 for all n1n \geq 1. Since {fn}n\set{f_n}_n is complete, we can write x=n=1x,fnfnx = \sum_{n=1}^\infty \inner{x, f_n}f_n. To make use of the condition given, set y=n=1x,fneny = \sum_{n=1}^\infty \inner{x, f_n}e_n, which gives

    xy2=n=1x,en(enfn)2(n=1x,fnenfn)2(n=1x,fn2)(n=1enfn2)(Cauchy-Schwarz)x2.\begin{aligned} \norm{x - y}^2 &= \norm{\sum_{n=1}^\infty \inner{x, e_n}\p{e_n - f_n}}^2 \\ &\leq \p{\sum_{n=1}^\infty \abs{\inner{x, f_n}}\norm{e_n - f_n}}^2 \\ &\leq \p{\sum_{n=1}^\infty \abs{\inner{x, f_n}}^2} \p{\sum_{n=1}^\infty \norm{e_n - f_n}^2} && \p{\text{Cauchy-Schwarz}} \\ &\leq \norm{x}^2. \end{aligned}

    But by assumption, x,en=0\inner{x, e_n} = 0 for all n1n \geq 1, which implies that x,y=0\inner{x, y} = 0. Hence, by the Pythagorean theorem,

    x2+y2x2    y=0,\norm{x}^2 + \norm{y}^2 \leq \norm{x}^2 \implies y = 0,

    and so x,fn=0\inner{x, f_n} = 0 for all n1n \geq 1 as well. Since {fn}n\set{f_n}_n was complete, this implies that x=0x = 0, so {xn}n\set{x_n}_n is complete as well.

  2. For NNN \in \N, let EN=span{eN,eN+1,}E_N = \cl{\span{\set{e_N, e_{N+1}, \ldots}}} and FN=span{fN,fN+1,}F_N = \cl{\span{\set{f_N, f_{N+1}, \ldots}}}. Since these are closed subspaces, we have orthogonal projections πEN\pi_{E_N} and πVN\pi_{V_N}, respectively. Then for any xHx \in \mathcal{H},

    πEN(x)πVN(x)=n=Nx,enenn=Nx,fnfnn=Nx,en(enfn)+n=Nx,enfnfnn=Nx,enenfn+(n=Nx,enfn2)1/2(n=Nx,en2)1/2(n=Nenfn2)1/2+(n=Nx2enfn2)1/2(Cauchy-Schwarz)2x(n=Nenfn2)1/2.(Bessel’s inequality)\begin{aligned} \norm{\pi_{E_N}\p{x} - \pi_{V_N}\p{x}} &= \norm{\sum_{n=N}^\infty \inner{x, e_n}e_n - \sum_{n=N}^\infty \inner{x, f_n}f_n} \\ &\leq \norm{\sum_{n=N}^\infty \inner{x, e_n}\p{e_n - f_n}} + \norm{\sum_{n=N}^\infty \inner{x, e_n - f_n}f_n} \\ &\leq \sum_{n=N}^\infty \abs{\inner{x, e_n}} \norm{e_n - f_n} + \p{\sum_{n=N}^\infty \abs{\inner{x, e_n - f_n}}^2}^{1/2} \\ &\leq \p{\sum_{n=N}^\infty \abs{\inner{x, e_n}}^2}^{1/2} \p{\sum_{n=N}^\infty \norm{e_n - f_n}^2}^{1/2} + \p{\sum_{n=N}^\infty \norm{x}^2 \norm{e_n - f_n}^2}^{1/2} && \p{\text{Cauchy-Schwarz}} \\ &\leq 2\norm{x} \p{\sum_{n=N}^\infty \norm{e_n - f_n}^2}^{1/2}. && \p{\text{Bessel's inequality}} \end{aligned}

    We will show that for large values of NN, ENE_N and FNF_N intuitively capture the same amount of information. More precisely, we will show that because FNF_N^\perp is finite dimensional ({fn}n\set{f_n}_n is a complete orthonormal system), this forces ENE_N^\perp to be finite dimensional as well.

    Hence, πENπFN0\norm{\pi_{E_N} - \pi_{F_N}} \to 0 as NN \to \infty. Notice also that H=ENEN=FNFN\mathcal{H} = E_N \oplus E_N^\perp = F_N \oplus F_N^\perp, which means πEN=idπEN\pi_{E_N^\perp} = \id - \pi_{E_N} and πFN=idπFN\pi_{F_N^\perp} = \id - \pi_{F_N}. Thus,

    πENπFN=(idπEN)(idπFN)=πENπFN.\norm{\pi_{E_N^\perp} - \pi_{F_N^\perp}} = \norm{\p{\id - \pi_{E_N}} - \p{\id - \pi_{F_N}}} = \norm{\pi_{E_N} - \pi_{F_N}}.

    Let NN be large enough so that πENπFN<12\norm{\pi_{E_N^\perp} - \pi_{F_N^\perp}} < \frac{1}{2}. Since FNF_N^\perp has dimension N1N - 1, any set {x1,,xn}\set{x_1, \ldots, x_n} of NN elements must be linearly dependent after projecting to FNF_N^\perp. In particular, if x1,,xnENx_1, \ldots, x_n \in E_N^\perp, then there exist c1,,cnc_1, \ldots, c_n such that

    0=n=1NcnπFN(xn)=πFN(n=1Ncnxn).0 = \sum_{n=1}^N c_n\pi_{F_N}\p{x_n} = \pi_{F_N}\p{\sum_{n=1}^N c_nx_n}.

    Then by the triangle inequality,

    n=1Ncnxn=πEN(n=1Ncnxn)(πENπFN)(n=1Ncnxn)+πFN(n=1Ncnxn)πENπFNn=1Ncnxn12n=1Ncnxn,\begin{aligned} \norm{\sum_{n=1}^N c_nx_n} &= \norm{\pi_{E_N}\p{\sum_{n=1}^N c_nx_n}} \\ &\leq \norm{\p{\pi_{E_N} - \pi_{F_N}}\p{\sum_{n=1}^N c_nx_n}} + \norm{\pi_{F_N}\p{\sum_{n=1}^N c_nx_n}} \\ &\leq \norm{\pi_{E_N} - \pi_{F_N}} \norm{\sum_{n=1}^N c_nx_n} \\ &\leq \frac{1}{2}\norm{\sum_{n=1}^N c_nx_n}, \end{aligned}

    which implies that n=1Ncnxn=0\sum_{n=1}^N c_nx_n = 0, i.e., {x1,,xn}\set{x_1, \ldots, x_n} is linearly dependent in ENE_N^\perp. Since these vectors were arbitrary, it follows that dimENN1\dim{E_N^\perp} \leq N - 1. But ENE_N^\perp contain the orthonormal set {e1,,eN1}\set{e_1, \ldots, e_{N-1}}, so dimEN=N1\dim{E_N^\perp} = N - 1, i.e., {e1,,eN1}\set{e_1, \ldots, e_{N-1}} spans ENE_N^\perp, and so {en}n\set{e_n}_n is a complete orthonormal system.