Fall 2015 - Problem 3

Lp spaces

Let fLloc1(Rd)f \in L^1_{\mathrm{loc}}\p{\R^d} be such that for some 0<p<10 < p < 1, we have

f(x)g(x)dx(g(x)pdx)1/p,\abs{\int f\p{x} g\p{x} \,\diff{x}} \leq \p{\int \abs{g\p{x}}^p \,\diff{x}}^{1/p},

for all gC0(Rd)g \in C_0\p{\R^d}. Show that f(x)=0f\p{x} = 0 a.e. Here C0(Rd)C_0\p{\R^d} is the space of continuous functions with compact support on Rd\R^d.

Solution.

Let KK be a compact set and ε>0\epsilon > 0. Since KK is bounded, there exists R>0R > 0 such that KB(0,R)K \subseteq B\p{0, R}. Since fL1(B(0,R))f \in L^1\p{B\p{0, R}}, the map EB(0,R)Ef(x)dxE \mapsto \int_{B\p{0, R} \cap E} \abs{f\p{x}} \,\diff{x} defines a measure absolutely continuous with respect to the Lebesgue measure. Hence, there exists δ>0\delta > 0 such that if m(E)<δm\p{E} < \delta, then

B(0,R)Ef(x)dx<ε.\int_{B\p{0, R} \cap E} \abs{f\p{x}} \,\diff{x} < \epsilon.

By regularity of the Lebesgue measure, there exists an open set KUB(0,R)K \subseteq U \subseteq B\p{0, R} such that m(UK)<δm\p{U \setminus K} < \delta, and so UKf(x)dx<ε\int_{U \setminus K} \abs{f\p{x}} \,\diff{x} < \epsilon. Shrinking δ\delta further, we may assume that δ<ε\delta < \epsilon. Hence,

Kf(x)dx=Kf(x)g(x)dx=Uf(x)g(x)dxUKf(x)g(x)dxUf(x)g(x)dx+UKf(x)dx(g(x)pdx)1/p+εm(U)1/p+ε(m(K)+δ)1/p+ε(m(K)+ε)1/p+ε.\begin{aligned} \abs{\int_K f\p{x} \,\diff{x}} &= \abs{\int_K f\p{x}g\p{x} \,\diff{x}} \\ &= \abs{\int_U f\p{x}g\p{x} \,\diff{x} - \int_{U \setminus K} f\p{x}g\p{x} \,\diff{x}} \\ &\leq \abs{\int_U f\p{x}g\p{x} \,\diff{x}} + \int_{U \setminus K} \abs{f\p{x}} \,\diff{x} \\ &\leq \p{\int \abs{g\p{x}}^p \,\diff{x}}^{1/p} + \epsilon \\ &\leq m\p{U}^{1/p} + \epsilon \\ &\leq \p{m\p{K} + \delta}^{1/p} + \epsilon \\ &\leq \p{m\p{K} + \epsilon}^{1/p} + \epsilon. \end{aligned}

Sending ε0\epsilon \to 0, we see that the given inequality also works when gg is the characteristic equation on a compact set. We will now emphasize the fact that LpL^p does not satisfy the triangle inequality for 0<p<10 < p < 1: let QQ be a cube with side length LL, and for each NNN \in \N, decompose QQ into almost disjoint cubes QnQ_n with side lengths LN\frac{L}{N}. Then

f(x)χQ(x)dxn=1Ndf(x)χQndxn=1Ndm(Qn)1/p=n=1NdLdNd/p=LdNd(1p1)N0,\begin{aligned} \abs{\int f\p{x} \chi_Q\p{x} \,\diff{x}} \leq \sum_{n=1}^{N^d} \abs{\int f\p{x} \chi_{Q_n} \,\diff{x}} &\leq \sum_{n=1}^{N^d} m\p{Q_n}^{1/p} \\ &= \sum_{n=1}^{N^d} \frac{L^d}{N^{d/p}} \\ &= \frac{L^d}{N^{d\p{\frac{1}{p}-1}}} \xrightarrow{N\to\infty} 0, \end{aligned}

since 1p1>0\frac{1}{p} - 1 > 0. Indeed, since 0<p<10 < p < 1, the right-hand side shrinks instead of growing as NN \to \infty. Thus, we have shown that Qf(x)dx=0\int_Q f\p{x} \,\diff{x} = 0 for any cube. Hence, by the Lebesgue differentiation theorem, we see that f(x)=0f\p{x} = 0 almost everywhere.