Fall 2015 - Problem 2

Lp spaces

Let fLp(R)f \in L^p\p{\R}, 1<p<1 < p < \infty, and let aRa \in \R be such that a>11pa > 1 - \frac{1}{p}. Show that the series

n=1nn+naf(x+y)dy\sum_{n=1}^\infty \int_n^{n + n^{-a}} \abs{f\p{x + y}} \,\diff{y}

converges for almost all xRx \in \R.

Solution.

Let NNN \in \N. We will show that

NN+1n=1nn+naf(x+y)dydx<,\int_N^{N+1} \sum_{n=1}^\infty \int_n^{n+n^{-a}} \abs{f\p{x + y}} \,\diff{y} \,\diff{x} < \infty,

which proves the claim. Since f(x+y)\abs{f\p{x + y}} is non-negative, we may apply Fubini-Tonelli (viewing summation as integration with respect to the counting measure), which yields

NN+1n=1nn+naf(x+y)dydx=NN+1n=1Rχ[n,n+na](y)f(x+y)dydx=NN+1n=1Rχ[n,n+na](yx)f(y)dydx(yx+y)=Rf(y)NN+1n=1χ[y(n+na),yn](x)dxdy.\begin{aligned} \int_N^{N+1} \sum_{n=1}^\infty \int_n^{n+n^{-a}} \abs{f\p{x + y}} \,\diff{y} \,\diff{x} &= \int_N^{N+1} \sum_{n=1}^\infty \int_\R \chi_{\br{n, n+n^{-a}}}\p{y} \abs{f\p{x + y}} \,\diff{y} \,\diff{x} \\ &= \int_N^{N+1} \sum_{n=1}^\infty \int_\R \chi_{\br{n, n+n^{-a}}}\p{y - x} \abs{f\p{y}} \,\diff{y} \,\diff{x} && \p{y \mapsto x + y} \\ &= \int_\R \abs{f\p{y}} \int_N^{N+1} \sum_{n=1}^\infty \chi_{\br{y-\p{n+n^{-a}}, y-n}}\p{x} \,\diff{x} \,\diff{y}. \end{aligned}

Notice that in the inner integral, χ[y(n+na),yn](x)\chi_{\br{y-\p{n+n^{-a}}, y-n}}\p{x} will vanish whenever yn<Ny - n < N or y(n+na)>N+1y - \p{n + n^{-a}} > N + 1. Thus, the only terms that remain satisfy nyNn \leq y - N and n+nay(N+1)n + n^{-a} \geq y - \p{N + 1}. In particular, if n[(yN)1,yN]n \in \br{\p{y - N} - 1, y - N}, then both inequalities are satisfied. Thus, there are at most two non-vanishing terms, so

NN+1n=1χ[y(n+na),yn](x)dx(yN)1nyNmin{1,na}2min{1,yNa}.\begin{aligned} \int_N^{N+1} \sum_{n=1}^\infty \chi_{\br{y-\p{n+n^{-a}}, y-n}}\p{x} \,\diff{x} &\leq \sum_{\p{y - N} - 1 \leq n \leq y - N} \min\,\set{1, n^{-a}} \\ &\leq 2\min\,\set{1, \abs{y - N}^{-a}}. \end{aligned}

Hence, our original expression is bounded by

2Rf(y)min{1,yNa}dy=2fLpmin{1,yNa}Lq,\begin{aligned} 2\int_\R \abs{f\p{y}} \min\,\set{1, \abs{y - N}^{-a}} \,\diff{y} &= 2\norm{f}_{L^p} \norm{\min\,\set{1, \abs{y - N}^{-a}}}_{L^q}, \end{aligned}

where 1p+1q=1\frac{1}{p} + \frac{1}{q} = 1. Observe that by assumption, aq>1aq > 1, so xaq\abs{x}^{-aq} is integrable away from 00. Hence,

min{1,yNa}LqqB(N,1)dy+B(N,1)cyNaqdy<.\norm{\min\,\set{1, \abs{y - N}^{-a}}}_{L^q}^q \leq \int_{B\p{N,1}} \,\diff{y} + \int_{B\p{N,1}^\comp} \abs{y - N}^{-aq} \,\diff{y} < \infty.

Thus, the series is finite for almost every x[N,N+1]x \in \br{N, N + 1}, and because NNN \in \N was arbitrary, it follows that the series is finite almost everywhere.