Solution.
Let N ∈ N N \in \N N ∈ N . We will show that
∫ N N + 1 ∑ n = 1 ∞ ∫ n n + n − a ∣ f ( x + y ) ∣ d y d x < ∞ , \int_N^{N+1} \sum_{n=1}^\infty \int_n^{n+n^{-a}} \abs{f\p{x + y}} \,\diff{y} \,\diff{x} < \infty, ∫ N N + 1 n = 1 ∑ ∞ ∫ n n + n − a ∣ f ( x + y ) ∣ d y d x < ∞ ,
which proves the claim. Since ∣ f ( x + y ) ∣ \abs{f\p{x + y}} ∣ f ( x + y ) ∣ is non-negative, we may apply Fubini-Tonelli (viewing summation as integration with respect to the counting measure), which yields
∫ N N + 1 ∑ n = 1 ∞ ∫ n n + n − a ∣ f ( x + y ) ∣ d y d x = ∫ N N + 1 ∑ n = 1 ∞ ∫ R χ [ n , n + n − a ] ( y ) ∣ f ( x + y ) ∣ d y d x = ∫ N N + 1 ∑ n = 1 ∞ ∫ R χ [ n , n + n − a ] ( y − x ) ∣ f ( y ) ∣ d y d x ( y ↦ x + y ) = ∫ R ∣ f ( y ) ∣ ∫ N N + 1 ∑ n = 1 ∞ χ [ y − ( n + n − a ) , y − n ] ( x ) d x d y . \begin{aligned}
\int_N^{N+1} \sum_{n=1}^\infty \int_n^{n+n^{-a}} \abs{f\p{x + y}} \,\diff{y} \,\diff{x}
&= \int_N^{N+1} \sum_{n=1}^\infty \int_\R \chi_{\br{n, n+n^{-a}}}\p{y} \abs{f\p{x + y}} \,\diff{y} \,\diff{x} \\
&= \int_N^{N+1} \sum_{n=1}^\infty \int_\R \chi_{\br{n, n+n^{-a}}}\p{y - x} \abs{f\p{y}} \,\diff{y} \,\diff{x}
&& \p{y \mapsto x + y} \\
&= \int_\R \abs{f\p{y}} \int_N^{N+1} \sum_{n=1}^\infty \chi_{\br{y-\p{n+n^{-a}}, y-n}}\p{x} \,\diff{x} \,\diff{y}.
\end{aligned} ∫ N N + 1 n = 1 ∑ ∞ ∫ n n + n − a ∣ f ( x + y ) ∣ d y d x = ∫ N N + 1 n = 1 ∑ ∞ ∫ R χ [ n , n + n − a ] ( y ) ∣ f ( x + y ) ∣ d y d x = ∫ N N + 1 n = 1 ∑ ∞ ∫ R χ [ n , n + n − a ] ( y − x ) ∣ f ( y ) ∣ d y d x = ∫ R ∣ f ( y ) ∣ ∫ N N + 1 n = 1 ∑ ∞ χ [ y − ( n + n − a ) , y − n ] ( x ) d x d y . ( y ↦ x + y )
Notice that in the inner integral, χ [ y − ( n + n − a ) , y − n ] ( x ) \chi_{\br{y-\p{n+n^{-a}}, y-n}}\p{x} χ [ y − ( n + n − a ) , y − n ] ( x ) will vanish whenever y − n < N y - n < N y − n < N or y − ( n + n − a ) > N + 1 y - \p{n + n^{-a}} > N + 1 y − ( n + n − a ) > N + 1 . Thus, the only terms that remain satisfy n ≤ y − N n \leq y - N n ≤ y − N and n + n − a ≥ y − ( N + 1 ) n + n^{-a} \geq y - \p{N + 1} n + n − a ≥ y − ( N + 1 ) . In particular, if n ∈ [ ( y − N ) − 1 , y − N ] n \in \br{\p{y - N} - 1, y - N} n ∈ [ ( y − N ) − 1 , y − N ] , then both inequalities are satisfied. Thus, there are at most two non-vanishing terms, so
∫ N N + 1 ∑ n = 1 ∞ χ [ y − ( n + n − a ) , y − n ] ( x ) d x ≤ ∑ ( y − N ) − 1 ≤ n ≤ y − N min { 1 , n − a } ≤ 2 min { 1 , ∣ y − N ∣ − a } . \begin{aligned}
\int_N^{N+1} \sum_{n=1}^\infty \chi_{\br{y-\p{n+n^{-a}}, y-n}}\p{x} \,\diff{x}
&\leq \sum_{\p{y - N} - 1 \leq n \leq y - N} \min\,\set{1, n^{-a}} \\
&\leq 2\min\,\set{1, \abs{y - N}^{-a}}.
\end{aligned} ∫ N N + 1 n = 1 ∑ ∞ χ [ y − ( n + n − a ) , y − n ] ( x ) d x ≤ ( y − N ) − 1 ≤ n ≤ y − N ∑ min { 1 , n − a } ≤ 2 min { 1 , ∣ y − N ∣ − a } .
Hence, our original expression is bounded by
2 ∫ R ∣ f ( y ) ∣ min { 1 , ∣ y − N ∣ − a } d y = 2 ∥ f ∥ L p ∥ min { 1 , ∣ y − N ∣ − a } ∥ L q , \begin{aligned}
2\int_\R \abs{f\p{y}} \min\,\set{1, \abs{y - N}^{-a}} \,\diff{y}
&= 2\norm{f}_{L^p} \norm{\min\,\set{1, \abs{y - N}^{-a}}}_{L^q},
\end{aligned} 2 ∫ R ∣ f ( y ) ∣ min { 1 , ∣ y − N ∣ − a } d y = 2 ∥ f ∥ L p ∥ ∥ min { 1 , ∣ y − N ∣ − a } ∥ ∥ L q ,
where 1 p + 1 q = 1 \frac{1}{p} + \frac{1}{q} = 1 p 1 + q 1 = 1 . Observe that by assumption, a q > 1 aq > 1 a q > 1 , so ∣ x ∣ − a q \abs{x}^{-aq} ∣ x ∣ − a q is integrable away from 0 0 0 . Hence,
∥ min { 1 , ∣ y − N ∣ − a } ∥ L q q ≤ ∫ B ( N , 1 ) d y + ∫ B ( N , 1 ) c ∣ y − N ∣ − a q d y < ∞ . \norm{\min\,\set{1, \abs{y - N}^{-a}}}_{L^q}^q
\leq \int_{B\p{N,1}} \,\diff{y} + \int_{B\p{N,1}^\comp} \abs{y - N}^{-aq} \,\diff{y}
< \infty. ∥ ∥ min { 1 , ∣ y − N ∣ − a } ∥ ∥ L q q ≤ ∫ B ( N , 1 ) d y + ∫ B ( N , 1 ) c ∣ y − N ∣ − a q d y < ∞.
Thus, the series is finite for almost every x ∈ [ N , N + 1 ] x \in \br{N, N + 1} x ∈ [ N , N + 1 ] , and because N ∈ N N \in \N N ∈ N was arbitrary, it follows that the series is finite almost everywhere.