Fall 2015 - Problem 11

Phragmén-Lindelöf, subharmonic functions

Let Ω={(x,y)R2x>0, y>0}\Omega = \set{\p{x, y} \in \R^2 \mid x > 0,\ y > 0} and let uu be subharmonic in Ω\Omega, continuous in Ω\cl{\Omega}, such that

u(x,y)x+iy,u\p{x, y} \leq \abs{x + iy},

for large (x,y)Ω\p{x, y} \in \Omega. Assume that

u(x,0)ax,u(0,y)by,x,y0,u\p{x, 0} \leq ax, \quad u\p{0, y} \leq by, \quad x, y \geq 0,

for some a,b>0a, b > 0. Show that

u(x,y)ax+by,(x,y)Ω.u\p{x, y} \leq ax + by, \quad \p{x, y} \in \Omega.
Solution.

Observe that

u(x,y)(ax+by)u(x,y)x+iyu\p{x, y} - \p{ax + by} \leq u\p{x, y} \leq \abs{x + iy}

for large (x,y)Ω\p{x, y} \in \Omega, by assumption. Recall that φ(z)=zk\phi\p{z} = \abs{z}^k is a Phragmén-Lindelöf function for Ω\Omega, where 0<k<20 < k < 2. In particular, k=1k = 1 works. Thus, because u(x,y)(ax+by)u\p{x, y} - \p{ax + by} is subharmonic (uu is subharmonic and ax+byax + by is harmonic), it attains its maximum on the boundary.

On y=0y = 0, our assumption gives u(x,0)ax0u\p{x, 0} - ax \leq 0. Similarly, if x=0x = 0, we have u(0,y)by0u\p{0, y} - by \leq 0 as well. Hence, u(x,y)(ax+by)0u\p{x, y} - \p{ax + by} \leq 0 on all of Ω\Omega, i.e.,

u(x,y)ax+byu\p{x, y} \leq ax + by

on all of Ω\Omega.

For completeness, we will prove that φ(z)=zk\phi\p{z} = \abs{z}^k for 0<k<πβα0 < k < \frac{\pi}{\beta - \alpha} is Phragmén-Lindelöf function (PL function) for the sector Ω={α<Argz<β}\Omega = \set{\alpha < \Arg{z} < \beta}.

Let 0<k<k1<πβα0 < k < k_1 < \frac{\pi}{\beta - \alpha} and γ=α+βα2=α+β2\gamma = \alpha + \frac{\beta - \alpha}{2} = \frac{\alpha + \beta}{2} (this is the rotation needed to center the sector about the positive real axis). Set

ψ(z)=Re((eiγz)k1)=Re(ek1Log(eiγz))=Re(ek1logz+ik1(Arg(z)γ))=zk1cos(k1(Arg(z)γ)),\begin{aligned} \psi\p{z} = \Re\p{\p{e^{-i\gamma}z}^{k_1}} &= \Re\p{e^{k_1\Log\p{e^{-i\gamma}z}}} \\ &= \Re\p{e^{k_1\log\,\abs{z} + ik_1\p{\Arg\p{z}-\gamma}}} \\ &= \abs{z}^{k_1}\cos\p{k_1\p{\Arg\p{z} - \gamma}}, \end{aligned}

which is harmonic as the real part of an analytic function. Notice also that

βα2=αγ<Arg(z)γ<βγ=βα2.-\frac{\beta - \alpha}{2} = \alpha - \gamma < \Arg\p{z} - \gamma < \beta - \gamma = \frac{\beta - \alpha}{2}.

Hence,

k1(Arg(z)γ)[k1(βα2),k1(βα2)](π2,π2),k_1\p{\Arg\p{z} - \gamma} \in \br{-k_1\p{\frac{\beta - \alpha}{2}}, k_1\p{\frac{\beta - \alpha}{2}}} \subseteq \p{-\frac{\pi}{2}, \frac{\pi}{2}},

i.e., kk is chosen so that the cosine term in ψ\psi is bounded strictly above 00. Thus, for zz large,

φ(z)ψ(z)Czkk1z0.\frac{\phi\p{z}}{\psi\p{z}} \leq C\abs{z}^{k-k_1} \xrightarrow{z\to\infty} 0.

Let uu be subharmonic on Ω\Omega and continuous on Ω\cl{\Omega}. Suppose further that u(z)Mu\p{z} \leq M on Ω\partial\Omega and satisfies u(z)Cφ(z)u\p{z} \leq C\phi\p{z} for large zz and some C>0C > 0.

Let ε>0\epsilon > 0 and set uε(z)=u(z)εψ(z)u_\epsilon\p{z} = u\p{z} - \epsilon\psi\p{z}. This is subharmonic since uu is and because ψ\psi is harmonic. Then

uε(z)Cφ(z)εψ(z)=ψ(z)(εCφ(z)ψ(z))z.u_\epsilon\p{z} \leq C\phi\p{z} - \epsilon\psi\p{z} = -\psi\p{z}\p{\epsilon - C\frac{\phi\p{z}}{\psi\p{z}}} \xrightarrow{z\to\infty} -\infty.

In particular, there exists R>0R > 0 so that for large zz, uε(z)Mu_\epsilon\p{z} \leq M. Since B(0,R)ΩB\p{0, R} \cap \Omega is a bounded set, we may apply the maximum principle on uεu_\epsilon to see uε(z)Mu_\epsilon\p{z} \leq M on B(0,R)Ω\cl{B\p{0, R}} \cap \Omega. Hence, uεMu_\epsilon \leq M on all of Ω\Omega. Sending ε0\epsilon \to 0, we see that uMu \leq M on all of Ω\Omega, which completes the proof.