For n ≥ 1 n \geq 1 n ≥ 1 , let { t k ( n ) } 1 ≤ k ≤ n \set{t_k^{\p{n}}}_{1 \leq k \leq n} { t k ( n ) } 1 ≤ k ≤ n be a partition of [ a , b ] \br{a, b} [ a , b ] . Then set I k ( n ) = [ t k − 1 ( n ) , t k ( n ) ) I_k^{\p{n}} = \pco{t_{k-1}^{\p{n}}, t_k^{\p{n}}} I k ( n ) = [ t k − 1 ( n ) , t k ( n ) ) and
L n = ∑ k = 1 n χ I k ( n ) inf t ∈ I k ( n ) f ( t ) U n = ∑ k = 1 n χ I k ( n ) sup t ∈ I k ( n ) f ( t ) . \begin{aligned}
L_n
&= \sum_{k=1}^n \chi_{I_k^{\p{n}}} \inf_{t \in I_k^{\p{n}}} f\p{t} \\
U_n
&= \sum_{k=1}^n \chi_{I_k^{\p{n}}} \sup_{t \in I_k^{\p{n}}} f\p{t}.
\end{aligned} L n U n = k = 1 ∑ n χ I k ( n ) t ∈ I k ( n ) inf f ( t ) = k = 1 ∑ n χ I k ( n ) t ∈ I k ( n ) sup f ( t ) .
These are Borel functions since each χ I k ( n ) \chi_{I_k^{\p{n}}} χ I k ( n ) is Borel. Observe that if x x x is a point of continuity for f f f , then there exists (a unique) k ≥ 1 k \geq 1 k ≥ 1 such that x ∈ I k ( n ) x \in I_k^{\p{n}} x ∈ I k ( n ) , so
U n ( x ) − L n ( x ) = sup t ∈ I k ( n ) f ( t ) − inf t ∈ I k ( n ) f ( t ) → n → ∞ 0. U_n\p{x} - L_n\p{x}
= \sup_{t \in I_k^{\p{n}}} f\p{t} - \inf_{t \in I_k^{\p{n}}} f\p{t} \xrightarrow{n\to\infty} 0. U n ( x ) − L n ( x ) = t ∈ I k ( n ) sup f ( t ) − t ∈ I k ( n ) inf f ( t ) n → ∞ 0.
Conversely, if U n ( x ) − L n ( x ) → 0 U_n\p{x} - L_n\p{x} \to 0 U n ( x ) − L n ( x ) → 0 for some x ∈ [ a , b ] x \in \br{a, b} x ∈ [ a , b ] , then for all ε > 0 \epsilon > 0 ε > 0 , there exists N ∈ N N \in \N N ∈ N such that whenever n ≥ N n \geq N n ≥ N , we have
sup t ∈ I k n ( n ) f ( t ) − inf t ∈ I k n ( n ) f ( t ) ≤ ε , \sup_{t \in I_{k_n}^{\p{n}}} f\p{t} - \inf_{t \in I_{k_n}^{\p{n}}} f\p{t} \leq \epsilon, t ∈ I k n ( n ) sup f ( t ) − t ∈ I k n ( n ) inf f ( t ) ≤ ε ,
where k n k_n k n is such that x ∈ I k n ( n ) x \in I_{k_n}^{\p{n}} x ∈ I k n ( n ) for all n ≥ 1 n \geq 1 n ≥ 1 . Hence, if δ = d ( x , ( I k N ( N ) ) c ) \delta = d\p{x, \p{I_{k_N}^{\p{N}}}^\comp} δ = d ( x , ( I k N ( N ) ) c ) and ∣ x − y ∣ ≤ δ 2 \abs{x - y} \leq \frac{\delta}{2} ∣ x − y ∣ ≤ 2 δ , we see y ∈ I k N ( N ) y \in I_{k_N}^{\p{N}} y ∈ I k N ( N ) as well. Consequently,
∣ f ( x ) − f ( y ) ∣ ≤ sup t ∈ I k N ( N ) f ( t ) − inf t ∈ I k N ( N ) f ( t ) ≤ ε , \abs{f\p{x} - f\p{y}}
\leq \sup_{t \in I_{k_N}^{\p{N}}} f\p{t} - \inf_{t \in I_{k_N}^{\p{N}}} f\p{t}
\leq \epsilon, ∣ f ( x ) − f ( y ) ∣ ≤ t ∈ I k N ( N ) sup f ( t ) − t ∈ I k N ( N ) inf f ( t ) ≤ ε ,
so x x x is a point of continuity if and only if F ( x ) ≔ lim n → ∞ ( U n ( x ) − L n ( x ) ) = 0 F\p{x} \coloneqq \lim_{n\to\infty} \p{U_n\p{x} - L_n\p{x}} = 0 F ( x ) : = lim n → ∞ ( U n ( x ) − L n ( x ) ) = 0 . Since each U n − L n U_n - L_n U n − L n is Borel, F F F is Borel as a limit of these and so
{ x ∈ [ a , b ] ∣ f continuous at x } = F − 1 ( { 0 } ) ( ∗ ) \tag{$*$}
\set{x \in \br{a, b} \mid f \text{ continuous at } x}
= F^{-1}\p{\set{0}} { x ∈ [ a , b ] ∣ f continuous at x } = F − 1 ( { 0 } ) ( ∗ )
is Borel.
If f f f is Riemann integrable, let R ( f ) R\p{f} R ( f ) denote the Riemann integral of f f f over [ a , b ] \br{a, b} [ a , b ] . Then by definition, the Darboux sums must converge to R ( f ) R\p{f} R ( f ) , so if m m m denotes Lebesgue measure,
R ( f ) = lim n → ∞ ∫ [ a , b ] L n d m = lim n → ∞ ∫ [ a , b ] U n d m . R\p{f}
= \lim_{n\to\infty} \int_{\br{a,b}} L_n \,\diff{m}
= \lim_{n\to\infty} \int_{\br{a,b}} U_n \,\diff{m}. R ( f ) = n → ∞ lim ∫ [ a , b ] L n d m = n → ∞ lim ∫ [ a , b ] U n d m .
Since f f f is bounded by some M > 0 M > 0 M > 0 , ∣ U n − L n ∣ ≤ M ∈ L 1 ( [ a , b ] ) \abs{U_n - L_n} \leq M \in L^1\p{\br{a,b}} ∣ U n − L n ∣ ≤ M ∈ L 1 ( [ a , b ] ) , so by dominated convergence,
∫ [ a , b ] F d m = lim n → ∞ ∫ [ a , b ] U n − L n d m = 0. \int_{\br{a,b}} F \,\diff{m}
= \lim_{n\to\infty} \int_{\br{a,b}} U_n - L_n \,\diff{m}
= 0. ∫ [ a , b ] F d m = n → ∞ lim ∫ [ a , b ] U n − L n d m = 0.
But U n − L n ≥ 0 U_n - L_n \geq 0 U n − L n ≥ 0 , so F ≥ 0 ⟹ F = 0 F \geq 0 \implies F = 0 F ≥ 0 ⟹ F = 0 almost everywhere. From (∗ * ∗ ), we immediately see that f f f is continuous almost everywhere.
Conversely, suppose f f f is continuous almost everywhere, so (∗ * ∗ ) implies that F = 0 F = 0 F = 0 almost everywhere. Thus,
0 = ∫ [ a , b ] F d m = lim n → ∞ ∫ [ a , b ] U n − L n d m = lim n → ∞ ( ∫ [ a , b ] U n d m − ∫ [ a , b ] L n d m ) 0
= \int_{\br{a,b}} F \,\diff{m}
= \lim_{n\to\infty} \int_{\br{a,b}} U_n - L_n \,\diff{m}
= \lim_{n\to\infty} \p{\int_{\br{a,b}} U_n \,\diff{m} - \int_{\br{a,b}} L_n \,\diff{m}} 0 = ∫ [ a , b ] F d m = n → ∞ lim ∫ [ a , b ] U n − L n d m = n → ∞ lim ( ∫ [ a , b ] U n d m − ∫ [ a , b ] L n d m )
by dominated convergence again. Hence, we see that all Darboux sums converge to the same number, namely R ( f ) R\p{f} R ( f ) , so f f f is Riemann integrable.