Let f∈L1(R,dx) and β∈(0,1). Prove that
∫R∣x−a∣β∣f(x)∣<∞
for (Lebesgue) a.e. a∈R.
Solution.
It suffices to show that
∫−RR∫R∣x−a∣β∣f(x)∣dxda<∞
for every R>0. By Fubini-Tonelli (everything is non-negative),
∫−RR∫R∣x−a∣β∣f(x)∣dxda=∫R∣f(x)∣∫−RR∣x−a∣β1dadx=∫R∣f(x)∣∫x−Rx+R∣a∣β1dadx.
From here, there are three cases: If x+R<0, then
∫x−Rx+R∣a∣β1da≤∫−R0∣a∣β1da≤∫−RR∣a∣β1da.
Similarly, if x−R>0, then
∫x−Rx+R∣a∣β1da≤∫0R∣a∣β1da≤∫−RR∣a∣β1da.
Finally, if x−R≤0≤x+R, then x≤R, so [x−R,x+R]⊆[−2R,2R], which means
∫x−Rx+R∣x∣β1dx≤∫−2R2R∣x∣β1dx.
Hence, in every case,
∫x−Rx+R∣x∣β1dx≤∫−2R2R∣x∣β1dx=2∫02R∣x∣β1dx=1−β2(2R)1−β<∞.
Hence,
∫−RR∫R∣x−a∣β∣f(x)∣dxda≤∫R∣f(x)∣∫x−Rx+R∣a∣β1dadx≤1−β2(2R)1−β∥f∥L1<∞,
which completes the proof.