Spring 2014 - Problem 2

Lp spaces

Let fL1(R,dx)f \in L^1\p{\R, \diff{x}} and β(0,1)\beta \in \p{0, 1}. Prove that

Rf(x)xaβ<\int_\R \frac{\abs{f\p{x}}}{\abs{x - a}^\beta} < \infty

for (Lebesgue) a.e. aRa \in \R.

Solution.

It suffices to show that

RRRf(x)xaβdxda<\int_{-R}^R \int_\R \frac{\abs{f\p{x}}}{\abs{x - a}^\beta} \,\diff{x} \,\diff{a} < \infty

for every R>0R > 0. By Fubini-Tonelli (everything is non-negative),

RRRf(x)xaβdxda=Rf(x)RR1xaβdadx=Rf(x)xRx+R1aβdadx.\begin{aligned} \int_{-R}^R \int_\R \frac{\abs{f\p{x}}}{\abs{x - a}^\beta} \,\diff{x} \,\diff{a} &= \int_\R \abs{f\p{x}} \int_{-R}^R \frac{1}{\abs{x - a}^\beta} \,\diff{a} \,\diff{x} \\ &= \int_\R \abs{f\p{x}} \int_{x-R}^{x+R} \frac{1}{\abs{a}^\beta} \,\diff{a} \,\diff{x}. \end{aligned}

From here, there are three cases: If x+R<0x + R < 0, then

xRx+R1aβdaR01aβdaRR1aβda.\int_{x-R}^{x+R} \frac{1}{\abs{a}^\beta} \,\diff{a} \leq \int_{-R}^0 \frac{1}{\abs{a}^\beta} \,\diff{a} \leq \int_{-R}^R \frac{1}{\abs{a}^\beta} \,\diff{a}.

Similarly, if xR>0x - R > 0, then

xRx+R1aβda0R1aβdaRR1aβda.\int_{x-R}^{x+R} \frac{1}{\abs{a}^\beta} \,\diff{a} \leq \int_0^R \frac{1}{\abs{a}^\beta} \,\diff{a} \leq \int_{-R}^R \frac{1}{\abs{a}^\beta} \,\diff{a}.

Finally, if xR0x+Rx - R \leq 0 \leq x + R, then xRx \leq R, so [xR,x+R][2R,2R]\br{x - R, x + R} \subseteq \br{-2R, 2R}, which means

xRx+R1xβdx2R2R1xβdx.\int_{x-R}^{x+R} \frac{1}{\abs{x}^\beta} \,\diff{x} \leq \int_{-2R}^{2R} \frac{1}{\abs{x}^\beta} \,\diff{x}.

Hence, in every case,

xRx+R1xβdx2R2R1xβdx=202R1xβdx=2(2R)1β1β<.\int_{x-R}^{x+R} \frac{1}{\abs{x}^\beta} \,\diff{x} \leq \int_{-2R}^{2R} \frac{1}{\abs{x}^\beta} \,\diff{x} = 2\int_0^{2R} \frac{1}{\abs{x}^\beta} \,\diff{x} = \frac{2\p{2R}^{1-\beta}}{1 - \beta} < \infty.

Hence,

RRRf(x)xaβdxdaRf(x)xRx+R1aβdadx2(2R)1β1βfL1<,\int_{-R}^R \int_\R \frac{\abs{f\p{x}}}{\abs{x - a}^\beta} \,\diff{x} \,\diff{a} \leq \int_\R \abs{f\p{x}} \int_{x-R}^{x+R} \frac{1}{\abs{a}^\beta} \,\diff{a} \,\diff{x} \leq \frac{2\p{2R}^{1-\beta}}{1 - \beta} \norm{f}_{L^1} < \infty,

which completes the proof.