Spring 2014 - Problem 11

calculation, residue theorem

For each p(1,1)p \in \p{-1, 1}, compute the improper Riemann integral

0xpx2+1dx.\int_0^\infty \frac{x^p}{x^2 + 1} \,\diff{x}.
Solution.

Let f(z)=zpz2+1f\p{z} = \frac{z^p}{z^2 + 1} and for 0<ε<1<R0 < \epsilon < 1 < R, consider the contour γε,R\gamma_{\epsilon,R} given by

γε,R=[R,ε]{εeiθ0θπ}[ε,R]{Reiθ0θR}.\gamma_{\epsilon,R} = \br{-R, -\epsilon} \cup \set{\epsilon e^{i\theta} \mid 0 \leq \theta \leq \pi} \cup \br{\epsilon, R} \cup \set{Re^{i\theta} \mid 0 \leq \theta \leq R}.

On the larger semicircle CRC_R,

CRf(z)dz0πiRp+1eipθeiθR2ei2θ+1dθRp+10π1R21dθ=2πRp+1R21R0,\begin{aligned} \abs{\int_{C_R} f\p{z} \,\diff{z}} &\leq \int_0^\pi \abs{\frac{iR^{p+1}e^{ip\theta}e^{i\theta}}{R^2e^{i2\theta} + 1}} \,\diff\theta \\ &\leq R^{p+1} \int_0^\pi \frac{1}{R^2 - 1} \,\diff\theta \\ &= \frac{2\pi R^{p+1}}{R^2 - 1} \xrightarrow{R\to\infty} 0, \end{aligned}

since p+1<2\abs{p + 1} < 2. On the smaller semicircle CεC_\epsilon,

Cεf(z)dz0πiεp+1eipθeiθε2ei2θ+1dθεp+10π1ε21dθ=2πεp+1ε21ε0,\begin{aligned} \abs{\int_{C_\epsilon} f\p{z} \,\diff{z}} &\leq \int_0^\pi \abs{\frac{i\epsilon^{p+1}e^{ip\theta}e^{i\theta}}{\epsilon^2e^{i2\theta} + 1}} \,\diff\theta \\ &\leq \epsilon^{p+1} \int_0^\pi \frac{1}{\epsilon^2 - 1} \,\diff\theta \\ &= \frac{2\pi \epsilon^{p+1}}{\epsilon^2 - 1} \xrightarrow{\epsilon\to\infty} 0, \end{aligned}

since ε<1\abs{\epsilon} < 1, so the denominator is non-zero. On [R,ε]\br{-R, -\epsilon}, taking arguments in (π2,3π2)\p{-\frac{\pi}{2}, \frac{3\pi}{2}}, we have

Rεzpz2+1dz=Rεeplogzz2+1dz=Rεep(logx+iπ)x2+1dz=eipπRεxpx2+1dx.\begin{aligned} \int_{-R}^{-\epsilon} \frac{z^p}{z^2 + 1} \,\diff{z} &= \int_{-R}^{-\epsilon} \frac{e^{p\log{z}}}{z^2 + 1} \,\diff{z} \\ &= \int_{-R}^{-\epsilon} \frac{e^{p\p{\log{x} + i\pi}}}{x^2 + 1} \,\diff{z} \\ &= e^{ip\pi} \int_{-R}^{-\epsilon} \frac{x^p}{x^2 + 1} \,\diff{x}. \end{aligned}

Next, by the residue theorem,

γε,Rf(z)dz=2πiRes(f;i)=2πilimzi(zi)zpz2+1=2πilimzizpz+i=πeipπ/2.\begin{aligned} \int_{\gamma_{\epsilon,R}} f\p{z} \,\diff{z} &= 2\pi i \Res{f}{i} \\ &= 2\pi i \lim_{z \to i}\,\p{z - i} \frac{z^p}{z^2 + 1} \\ &= 2\pi i \lim_{z \to i} \frac{z^p}{z + i} \\ &= \pi e^{ip\pi/2}. \end{aligned}

Thus, in the limit as ε0\epsilon \to 0 and RR \to \infty,

(1+eipπ)0xpx2+1dx=πeipπ/2.\p{1 + e^{ip\pi}}\int_0^\infty \frac{x^p}{x^2 + 1} \,\diff{x} = \pi e^{ip\pi/2}.

To complete the computation, we compute

eipπ/21+eipπ=1eipπ/2+eipπ/2=12cospπ2    0xpx2+1dx=π2secpπ2.\begin{aligned} \frac{e^{ip\pi/2}}{1 + e^{ip\pi}} &= \frac{1}{e^{-ip\pi/2} + e^{ip\pi/2}} \\ &= \frac{1}{2\cos\frac{p\pi}{2}} \\ \implies \int_0^\infty \frac{x^p}{x^2 + 1} \,\diff{x} &= \frac{\pi}{2}\sec\frac{p\pi}{2}. \end{aligned}