Spring 2014 - Problem 10

analytic continuation

Let α[0,1]Q\alpha \in \br{0, 1} \setminus \Q and let {an}n1(N)\set{a_n}_n \subseteq \ell^1\p{\N} with an0a_n \neq 0 for all n1n \geq 1. Set D={zCz<1}\D = \set{z \in \C \mid \abs{z} < 1}. Show that

f(z)=n1anzeiαn,zD,f\p{z} = \sum_{n\geq1} \frac{a_n}{z - e^{i\alpha n}}, \quad z \in \D,

converges and defines a function that is analytic in D\D which does not admit an analytic continuation to any domain larger than D\D.

Solution.

It suffices to show that the partial sums are uniformly bounded on compact sets. Without loss of generality, suppose K=B(0,R)K = \cl{B\p{0, R}}, where R(0,1)R \in \p{0, 1}, so for zKz \in K,

f(z)n=1an1zn=1an1R<,\abs{f\p{z}} \leq \sum_{n=1}^\infty \frac{\abs{a_n}}{1 - \abs{z}} \leq \sum_{n=1}^\infty \frac{\abs{a_n}}{1 - R} < \infty,

since {an}n1(N)\set{a_n}_n \in \ell^1\p{\N}. Thus, the sum converges locally uniformly, so ff defines a holomorphic function in the disk D\D. For the second claim, first notice that if kNk \in \N, then

(zeiαk)f(z)=ak+nkzeiαkzeiαnan.\p{z - e^{i\alpha k}}f\p{z} = a_k + \sum_{n \neq k} \frac{z - e^{i\alpha k}}{z - e^{i\alpha n}} a_n.

Thus, if z=reiαkz = re^{i\alpha k},

zeiαkzeiαnan1r1ran=an\abs{\frac{z - e^{i\alpha k}}{z - e^{i\alpha n}}} \abs{a_n} \leq \frac{1 - r}{1 - r} \abs{a_n} = \abs{a_n}

for all rr. Hence, by dominated convergence,

limr1(reiαkeiαk)f(reiαk)=ak0,\lim_{r\to1}\,\p{re^{i\alpha k} - e^{i\alpha k}}f\p{re^{i\alpha k}} = a_k \neq 0,

so f(reiαk)f\p{re^{i\alpha k}} \to \infty as r1r \to 1. Since α\alpha is irrational, {αkk1}\set{\alpha k \mid k \geq 1} is dense in the torus R/Z\R/\Z. If ff had a holomorphic extension to some eiθDe^{i\theta} \in \partial\D, then by density, any neighborhood of eiθe^{i\theta} contains a pole, which is impossible, so ff cannot be extended analytically past the disk.