Spring 2014 - Problem 1

Fubini-Tonelli, measure theory

Consider a measure space (X,X)\p{X, \mathcal{X}} with a sigma-finite measure μ\mu and, for each tRt \in \R, let ete_t denote the characteristic function of the interval (t,)\p{t, \infty}. Prove that if f,g ⁣:XR\func{f,g}{X}{\R} are X\mathcal{X}-measurable, then fgL1(X)=RetfetgL1(X)dt.\norm{f - g}_{L^1\p{X}} = \int_\R \norm{e_t \circ f - e_t \circ g}_{L^1\p{X}} \,\diff{t}.

Solution.

First, notice that

etfetg(x)={1if f(x)t<g(x),1if g(x)t<f(x),0otherwise.\abs{e_t \circ f - e_t \circ g}\p{x} = \begin{cases} 1 & \text{if } f\p{x} \leq t < g\p{x}, \\ 1 & \text{if } g\p{x} \leq t < f\p{x}, \\ 0 & \text{otherwise}. \end{cases}

We begin on the right-hand side. Everything is non-negative and all measures are σ\sigma-finite, so we may apply Fubini-Tonelli to get

RetfetgL1dt=RXetfetg(x)dμ(x)dt=R{f<g}χ{f(x)t<g(x)}dμ(x)+{g<f}χ{g(x)t<f(x)}dμ(x)dt={f<g}Rχ{f(x)t<g(x)}dtdμ(x)+{g<f}Rχ{g(x)t<f(x)}dtdμ(x)={f<g}f(x)g(x)dtdμ(x)+{g<f}g(x)f(x)dtdμ(x)=f<gf(x)g(x)dμ(x)+g<ff(x)g(x)dμ(x)=Xf(x)g(x)dμ(x)=fgL1.\begin{aligned} \int_\R \norm{e_t \circ f - e_t \circ g}_{L^1} \,\diff{t} &= \int_\R \int_X \abs{e_t \circ f - e_t \circ g}\p{x} \,\diff\mu\p{x} \,\diff{t} \\ &= \int_\R \int_{\set{f < g}} \chi_{\set{f\p{x} \leq t < g\p{x}}} \,\diff\mu\p{x} + \int_{\set{g < f}} \chi_{\set{g\p{x} \leq t < f\p{x}}} \,\diff\mu\p{x} \,\diff{t} \\ &= \int_{\set{f < g}} \int_\R \chi_{\set{f\p{x} \leq t < g\p{x}}} \,\diff{t} \,\diff\mu\p{x} + \int_{\set{g < f}} \int_\R \chi_{\set{g\p{x} \leq t < f\p{x}}} \,\diff{t} \,\diff\mu\p{x} \\ &= \int_{\set{f < g}} \int_{f\p{x}}^{g\p{x}} \,\diff{t} \,\diff\mu\p{x} + \int_{\set{g < f}} \int_{g\p{x}}^{f\p{x}} \,\diff{t} \,\diff\mu\p{x} \\ &= \int_{f < g} \abs{f\p{x} - g\p{x}} \,\diff\mu\p{x} + \int_{g < f} \abs{f\p{x} - g\p{x}} \,\diff\mu\p{x} \\ &= \int_X \abs{f\p{x} - g\p{x}} \,\diff\mu\p{x} \\ &= \norm{f - g}_{L^1}. \end{aligned}