Fubini-Tonelli , measure theory
Consider a measure space ( X , X ) \p{X, \mathcal{X}} ( X , X ) with a sigma-finite measure μ \mu μ and, for each t ∈ R t \in \R t ∈ R , let e t e_t e t denote the characteristic function of the interval ( t , ∞ ) \p{t, \infty} ( t , ∞ ) . Prove that if f , g : X → R \func{f,g}{X}{\R} f , g : X → R are X \mathcal{X} X -measurable, then ∥ f − g ∥ L 1 ( X ) = ∫ R ∥ e t ∘ f − e t ∘ g ∥ L 1 ( X ) d t . \norm{f - g}_{L^1\p{X}} = \int_\R \norm{e_t \circ f - e_t \circ g}_{L^1\p{X}} \,\diff{t}. ∥ f − g ∥ L 1 ( X ) = ∫ R ∥ e t ∘ f − e t ∘ g ∥ L 1 ( X ) d t .
Solution.
First, notice that
∣ e t ∘ f − e t ∘ g ∣ ( x ) = { 1 if f ( x ) ≤ t < g ( x ) , 1 if g ( x ) ≤ t < f ( x ) , 0 otherwise . \abs{e_t \circ f - e_t \circ g}\p{x}
= \begin{cases}
1 & \text{if } f\p{x} \leq t < g\p{x}, \\
1 & \text{if } g\p{x} \leq t < f\p{x}, \\
0 & \text{otherwise}.
\end{cases} ∣ e t ∘ f − e t ∘ g ∣ ( x ) = ⎩ ⎨ ⎧ 1 1 0 if f ( x ) ≤ t < g ( x ) , if g ( x ) ≤ t < f ( x ) , otherwise .
We begin on the right-hand side. Everything is non-negative and all measures are σ \sigma σ -finite, so we may apply Fubini-Tonelli to get
∫ R ∥ e t ∘ f − e t ∘ g ∥ L 1 d t = ∫ R ∫ X ∣ e t ∘ f − e t ∘ g ∣ ( x ) d μ ( x ) d t = ∫ R ∫ { f < g } χ { f ( x ) ≤ t < g ( x ) } d μ ( x ) + ∫ { g < f } χ { g ( x ) ≤ t < f ( x ) } d μ ( x ) d t = ∫ { f < g } ∫ R χ { f ( x ) ≤ t < g ( x ) } d t d μ ( x ) + ∫ { g < f } ∫ R χ { g ( x ) ≤ t < f ( x ) } d t d μ ( x ) = ∫ { f < g } ∫ f ( x ) g ( x ) d t d μ ( x ) + ∫ { g < f } ∫ g ( x ) f ( x ) d t d μ ( x ) = ∫ f < g ∣ f ( x ) − g ( x ) ∣ d μ ( x ) + ∫ g < f ∣ f ( x ) − g ( x ) ∣ d μ ( x ) = ∫ X ∣ f ( x ) − g ( x ) ∣ d μ ( x ) = ∥ f − g ∥ L 1 . \begin{aligned}
\int_\R \norm{e_t \circ f - e_t \circ g}_{L^1} \,\diff{t}
&= \int_\R \int_X \abs{e_t \circ f - e_t \circ g}\p{x} \,\diff\mu\p{x} \,\diff{t} \\
&= \int_\R \int_{\set{f < g}} \chi_{\set{f\p{x} \leq t < g\p{x}}} \,\diff\mu\p{x} + \int_{\set{g < f}} \chi_{\set{g\p{x} \leq t < f\p{x}}} \,\diff\mu\p{x} \,\diff{t} \\
&= \int_{\set{f < g}} \int_\R \chi_{\set{f\p{x} \leq t < g\p{x}}} \,\diff{t} \,\diff\mu\p{x} + \int_{\set{g < f}} \int_\R \chi_{\set{g\p{x} \leq t < f\p{x}}} \,\diff{t} \,\diff\mu\p{x} \\
&= \int_{\set{f < g}} \int_{f\p{x}}^{g\p{x}} \,\diff{t} \,\diff\mu\p{x} + \int_{\set{g < f}} \int_{g\p{x}}^{f\p{x}} \,\diff{t} \,\diff\mu\p{x} \\
&= \int_{f < g} \abs{f\p{x} - g\p{x}} \,\diff\mu\p{x} + \int_{g < f} \abs{f\p{x} - g\p{x}} \,\diff\mu\p{x} \\
&= \int_X \abs{f\p{x} - g\p{x}} \,\diff\mu\p{x} \\
&= \norm{f - g}_{L^1}.
\end{aligned} ∫ R ∥ e t ∘ f − e t ∘ g ∥ L 1 d t = ∫ R ∫ X ∣ e t ∘ f − e t ∘ g ∣ ( x ) d μ ( x ) d t = ∫ R ∫ { f < g } χ { f ( x ) ≤ t < g ( x ) } d μ ( x ) + ∫ { g < f } χ { g ( x ) ≤ t < f ( x ) } d μ ( x ) d t = ∫ { f < g } ∫ R χ { f ( x ) ≤ t < g ( x ) } d t d μ ( x ) + ∫ { g < f } ∫ R χ { g ( x ) ≤ t < f ( x ) } d t d μ ( x ) = ∫ { f < g } ∫ f ( x ) g ( x ) d t d μ ( x ) + ∫ { g < f } ∫ g ( x ) f ( x ) d t d μ ( x ) = ∫ f < g ∣ f ( x ) − g ( x ) ∣ d μ ( x ) + ∫ g < f ∣ f ( x ) − g ( x ) ∣ d μ ( x ) = ∫ X ∣ f ( x ) − g ( x ) ∣ d μ ( x ) = ∥ f − g ∥ L 1 .