Fall 2014 - Problem 8

entire functions

Let f ⁣:CC\func{f}{\C}{\C} be an entire function. Show that

f(z)Ceaz,zC,\abs{f\p{z}} \leq Ce^{a\abs{z}},\quad z\in \C,

for some constants CC and aa if and only if we have

f(n)(0)Mn+1,n=0,1,,\abs{f^{\p{n}}\p{0}} \leq M^{n+1},\quad n = 0, 1, \ldots,

for some constant MM.

Solution.

"    \implies"

By the Cauchy estimates, we get for any n>0n > 0 that

f(n)(0)n!2πB(0,n)f(ζ)ζn+1dζn!nnCeanAean\begin{aligned} \abs{f^{\p{n}}\p{0}} &\leq \frac{n!}{2\pi} \int_{\partial B\p{0,n}} \frac{\abs{f\p{\zeta}}}{\abs{\zeta}^{n+1}} \,\diff\abs{\zeta} \\ &\leq \frac{n!}{n^n} Ce^{an} \\ &\leq Ae^{an} \end{aligned}

by Stirling's approximation. Increasing AA if necessary, we may assume that A>1A > 1 so that f(n)(0)(Aea)n+1\abs{f^{\p{n}}\p{0}} \leq \p{Ae^a}^{n+1} for all n0n \geq 0.

"    \impliedby"

Writing f(z)=n=0anznf\p{z} = \sum_{n=0}^\infty a_nz^n, we see

an=f(n)(0)n!Mn+1n!.\abs{a_n} = \abs{\frac{f^{\p{n}}\p{0}}{n!}} \leq \frac{M^{n+1}}{n!}.

Thus,

f(z)n=0Mn+1n!zn=MeMz.\abs{f\p{z}} \leq \sum_{n=0}^\infty \frac{M^{n+1}}{n!}\abs{z}^n = Me^{M\abs{z}}.