Fall 2014 - Problem 7

conformal mappings

Find an explicit conformal mapping from the upper half-plane slit along the vertical segment,

{zCImz>0}(0,0+ih],h>0,\set{z \in \C \mid \Im{z} > 0} \setminus \poc{0, 0 + ih}, \quad h > 0,

to the unit disk {zCz<1}\set{z \in \C \mid \abs{z} < 1}.

Solution.

Let Ω\Omega be the domain in question.

First, consider the map φ1(z)=zzih\phi_1\p{z} = \frac{z}{z - ih}, which is the Möbius transformation which sends 000 \mapsto 0, ihih \mapsto \infty, and 1\infty \mapsto 1. Notice that

φ1(1)=11+h2(1+ih)andφ1(1)=11+h2(1+ih),\phi_1\p{1} = \frac{1}{1 + h^2}\p{1 + ih} \quad\text{and}\quad \phi_1\p{-1} = \frac{1}{1 + h^2}\p{-1 + ih},

so the real line is mapped to the generalized circle containing 0,11+h2(1+ih),11+h2(1+ih),10, \frac{1}{1 + h^2}\p{1 + ih}, \frac{1}{1 + h^2}\p{-1 + ih}, 1. By symmetry, this is the circle centered at i2\frac{i}{2} of radius 12\frac{1}{2}. Notice that if t0t \geq 0, then

φ1(it)=ititih=tth,\phi_1\p{it} = \frac{it}{it - ih} = \frac{t}{t - h},

so the ray (0,ih]\poc{0, ih} is mapped to (0,]\poc{0, -\infty}, and the ray (ih,]\poc{ih, \infty} is mapped to [1,]\br{1, \infty}. Hence, φ1\phi_1 maps Ω\Omega to Ω1={zi2>12}(,0)\Omega_1 = \set{\abs{z - \frac{i}{2}} > \frac{1}{2}} \setminus \p{-\infty, 0}. If we let φ2(z)=2(zi2)\phi_2\p{z} = 2\p{z - \frac{i}{2}}, then φ2φ1\phi_2 \circ \phi_1 maps Ω\Omega to Ω2={z>1}(i,i)\Omega_2 = \set{\abs{z} > 1} \setminus \p{-i\infty, -i}, i.e., the exterior of the unit disk with the bottom ray removed.

Let φ3(z)=1z\phi_3\p{z} = \frac{1}{z}. Then {z>1}\set{\abs{z} > 1} is mapped to {z<1}\set{\abs{z} < 1}, and the ray (i,i)\p{-i\infty, -i} gets mapped to (0,i)\p{0, i}, so φ3\phi_3 maps Ω2\Omega_2 conformally to Ω3={z<1}(0,i)\Omega_3 = \set{\abs{z} < 1} \setminus \p{0, i}. Let φ4(z)=i\phi_4\p{z} = -i, which maps Ω3\Omega_3 to Ω4={z<1}(0,1)\Omega_4 = \set{\abs{z} < 1} \setminus \p{0, 1}, which is the unit disk with a segment removed.

Let φ5(z)=z\phi_5\p{z} = \sqrt{z} where the argument of a number is taken in [0,2π)\pco{0, 2\pi}. This maps Ω4\Omega_4 to Ω5={z<1}{Imz>0}\Omega_5 = \set{\abs{z} < 1} \cap \set{\Im{z} > 0}, which is the upper half of the unit disk.

Let φ6(z)\phi_6\p{z} be the Möbius transform sending 10-1 \mapsto 0, 11 \mapsto \infty, and iii \mapsto i, i.e.,

φ6(z)=z+1z1.\phi_6\p{z} = -\frac{z + 1}{z - 1}.

This maps (1,1)\p{-1, 1} to (0,)\p{0, \infty} and the upper half of the unit circle to (0,i)\p{0, i\infty}, so this maps Ω5\Omega_5 to Ω6={Imz>0}{Rez>0}\Omega_6 = \set{\Im{z} > 0} \cap \set{\Re{z} > 0}. Let φ7(z)=z2\phi_7\p{z} = z^2, which maps Ω6\Omega_6 to Ω7={Imz>0}\Omega_7 = \set{\Im{z} > 0}.

Finally, we can let φ8(z)=ziz+i\phi_8\p{z} = \frac{z - i}{z + i}, the Cayley transform, which maps the upper half-plane to the unit disk. Hence, φ8φ7φ1\phi_8 \circ \phi_7 \circ \cdots \circ \phi_1 is a conformal mapping from Ω\Omega to the unit disk.