Given f ∈ L 2 ( [ 0 , π ] ) f \in L^2\p{\br{0,\pi}} f ∈ L 2 ( [ 0 , π ] ) , we say that f ∈ G f \in \mathcal{G} f ∈ G if f f f admits a representation of the form
f ( x ) = ∑ n = 0 ∞ c n cos n x with ∑ n = 0 ∞ ( 1 + n 2 ) ∣ c n ∣ 2 < ∞ . f\p{x} = \sum_{n=0}^\infty c_n\cos{nx}
\quad\text{with}\quad \sum_{n=0}^\infty \p{1 + n^2}\abs{c_n}^2 < \infty. f ( x ) = n = 0 ∑ ∞ c n cos n x with n = 0 ∑ ∞ ( 1 + n 2 ) ∣ c n ∣ 2 < ∞.
Show that if f ∈ G f \in \mathcal{G} f ∈ G and g ∈ G g \in \mathcal{G} g ∈ G , then f g ∈ G fg \in \mathcal{G} f g ∈ G .
Solution.
Write f ( x ) = ∑ n = 0 ∞ c n cos n x f\p{x} = \sum_{n=0}^\infty c_n\cos{nx} f ( x ) = ∑ n = 0 ∞ c n cos n x and g ( x ) = ∑ n = 0 ∞ d n cos n x g\p{x} = \sum_{n=0}^\infty d_n\cos{nx} g ( x ) = ∑ n = 0 ∞ d n cos n x with the convergence properties given. Observe that
f ( x ) g ( x ) = ∑ n = 0 ∞ ∑ m = 0 ∞ c n d m cos n x cos m x = ∑ n = 0 ∞ ∑ m = 0 ∞ c n d m 2 ( cos ( n + m ) x + cos ( n − m ) x ) ≕ ∑ k = 0 ∞ a k cos k x , \begin{aligned}
f\p{x}g\p{x}
&= \sum_{n=0}^\infty \sum_{m=0}^\infty c_nd_m \cos{nx} \cos{mx} \\
&= \sum_{n=0}^\infty \sum_{m=0}^\infty \frac{c_nd_m}{2} \p{\cos{\p{n + m}x} + \cos{\p{n - m}x}} \\
&\eqqcolon \sum_{k=0}^\infty a_k\cos{kx},
\end{aligned} f ( x ) g ( x ) = n = 0 ∑ ∞ m = 0 ∑ ∞ c n d m cos n x cos m x = n = 0 ∑ ∞ m = 0 ∑ ∞ 2 c n d m ( cos ( n + m ) x + cos ( n − m ) x ) = : k = 0 ∑ ∞ a k cos k x ,
so f g fg f g can be represented in the right form as long as the sum converges absolutely (and hence may be rearranged). This is indeed the case, as
∑ n = 0 ∞ ∑ m = 0 ∞ ∣ c n d m cos n x cos m x ∣ ≤ ( ∑ n = 0 ∞ ∣ c n ∣ ) ( ∑ m = 0 ∞ ∣ d m ∣ ) = ( ∑ n = 0 ∞ 1 + n 2 ∣ c n ∣ ⋅ 1 1 + n 2 ) ( ∑ m = 0 ∞ 1 + m 2 ∣ d m ∣ ⋅ 1 1 + m 2 ) ≤ ( ∑ n = 0 ∞ ( 1 + n 2 ) ∣ c n ∣ 2 ) 1 / 2 ( ∑ m = 0 ∞ ( 1 + m 2 ) ∣ d m ∣ 2 ) 1 / 2 ∑ n = 0 ∞ 1 1 + n 2 < ∞ , \begin{aligned}
\sum_{n=0}^\infty \sum_{m=0}^\infty \abs{c_nd_m \cos{nx} \cos{mx}}
&\leq \p{\sum_{n=0}^\infty \abs{c_n}} \p{\sum_{m=0}^\infty \abs{d_m}} \\
&= \p{\sum_{n=0}^\infty \sqrt{1 + n^2}\abs{c_n} \cdot \frac{1}{\sqrt{1 + n^2}}} \p{\sum_{m=0}^\infty \sqrt{1 + m^2}\abs{d_m} \cdot \frac{1}{\sqrt{1 + m^2}}} \\
&\leq \p{\sum_{n=0}^\infty \p{1 + n^2}\abs{c_n}^2}^{1/2} \p{\sum_{m=0}^\infty \p{1 + m^2}\abs{d_m}^2}^{1/2} \sum_{n=0}^\infty \frac{1}{1 + n^2} \\
&< \infty,
\end{aligned} n = 0 ∑ ∞ m = 0 ∑ ∞ ∣ c n d m cos n x cos m x ∣ ≤ ( n = 0 ∑ ∞ ∣ c n ∣ ) ( m = 0 ∑ ∞ ∣ d m ∣ ) = ( n = 0 ∑ ∞ 1 + n 2 ∣ c n ∣ ⋅ 1 + n 2 1 ) ( m = 0 ∑ ∞ 1 + m 2 ∣ d m ∣ ⋅ 1 + m 2 1 ) ≤ ( n = 0 ∑ ∞ ( 1 + n 2 ) ∣ c n ∣ 2 ) 1/2 ( m = 0 ∑ ∞ ( 1 + m 2 ) ∣ d m ∣ 2 ) 1/2 n = 0 ∑ ∞ 1 + n 2 1 < ∞ ,
so the sum converges absolutely. By absolute convergence and orthogonality, we get
∫ 0 π ∣ f ( x ) g ( x ) ∣ 2 d x = ∫ 0 π ∣ ( ∑ k = 0 ∞ a k cos k x ) ( ∑ ℓ = 0 ∞ a ℓ cos ℓ x ) ∣ d x ≤ ∑ k = 0 ∞ ∫ 0 π ∣ a k ∣ 2 cos 2 k x d x = π 2 ∑ k = 0 ∞ ∣ a k ∣ 2 . \begin{aligned}
\int_0^\pi \abs{f\p{x}g\p{x}}^2 \,\diff{x}
&= \int_0^\pi \abs{\p{\sum_{k=0}^\infty a_k\cos{kx}} \p{\sum_{\ell=0}^\infty a_\ell\cos{\ell x}}} \,\diff{x} \\
&\leq \sum_{k=0}^\infty \int_0^\pi \abs{a_k}^2 \cos^2{kx} \,\diff{x} \\
&= \frac{\pi}{2} \sum_{k=0}^\infty \abs{a_k}^2.
\end{aligned} ∫ 0 π ∣ f ( x ) g ( x ) ∣ 2 d x = ∫ 0 π ∣ ∣ ( k = 0 ∑ ∞ a k cos k x ) ( ℓ = 0 ∑ ∞ a ℓ cos ℓ x ) ∣ ∣ d x ≤ k = 0 ∑ ∞ ∫ 0 π ∣ a k ∣ 2 cos 2 k x d x = 2 π k = 0 ∑ ∞ ∣ a k ∣ 2 .
Hence, if we show that ∑ k = 0 ∞ ( 1 + k 2 ) ∣ a k ∣ 2 < ∞ \sum_{k=0}^\infty \p{1 + k^2}\abs{a_k}^2 < \infty ∑ k = 0 ∞ ( 1 + k 2 ) ∣ a k ∣ 2 < ∞ , then we will have shown that f g ∈ L 2 fg \in L^2 f g ∈ L 2 as well. Since we are working with non-negative values, we may re-order the terms:
∑ k = 0 ∞ ( 1 + k 2 ) ∣ a k ∣ 2 = 1 4 ∑ n = 0 ∞ ∑ m = 0 ∞ ∣ c n d m ∣ 2 ( ( 1 + ( n + m ) 2 ) + ( 1 + ( n − m ) 2 ) ) = 1 2 ∑ n = 0 ∞ ∑ m = 0 ∞ ∣ c n d m ∣ 2 ( 1 + m 2 + n 2 ) ≤ 1 2 ∑ n = 0 ∞ ∑ m = 0 ∞ ∣ c n d m ∣ 2 ( 1 + m 2 ) ( 1 + n 2 ) = 1 2 ( ∑ n = 0 ∞ ( 1 + n 2 ) ∣ c n ∣ 2 ) ( ∑ m = 0 ∞ ( 1 + m 2 ) ∣ d m ∣ 2 ) < ∞ , \begin{aligned}
\sum_{k=0}^\infty \p{1 + k^2}\abs{a_k}^2
&= \frac{1}{4} \sum_{n=0}^\infty \sum_{m=0}^\infty \abs{c_nd_m}^2\p{\p{1 + \p{n + m}^2} + \p{1 + \p{n - m}^2}} \\
&= \frac{1}{2} \sum_{n=0}^\infty \sum_{m=0}^\infty \abs{c_nd_m}^2 \p{1 + m^2 + n^2} \\
&\leq \frac{1}{2} \sum_{n=0}^\infty \sum_{m=0}^\infty \abs{c_nd_m}^2 \p{1 + m^2}\p{1 + n^2} \\
&= \frac{1}{2} \p{\sum_{n=0}^\infty \p{1 + n^2}\abs{c_n}^2} \p{\sum_{m=0}^\infty \p{1 + m^2}\abs{d_m}^2} \\
&< \infty,
\end{aligned} k = 0 ∑ ∞ ( 1 + k 2 ) ∣ a k ∣ 2 = 4 1 n = 0 ∑ ∞ m = 0 ∑ ∞ ∣ c n d m ∣ 2 ( ( 1 + ( n + m ) 2 ) + ( 1 + ( n − m ) 2 ) ) = 2 1 n = 0 ∑ ∞ m = 0 ∑ ∞ ∣ c n d m ∣ 2 ( 1 + m 2 + n 2 ) ≤ 2 1 n = 0 ∑ ∞ m = 0 ∑ ∞ ∣ c n d m ∣ 2 ( 1 + m 2 ) ( 1 + n 2 ) = 2 1 ( n = 0 ∑ ∞ ( 1 + n 2 ) ∣ c n ∣ 2 ) ( m = 0 ∑ ∞ ( 1 + m 2 ) ∣ d m ∣ 2 ) < ∞ ,
so f g ∈ G fg \in \mathcal{G} f g ∈ G .