Fall 2014 - Problem 4

Fourier analysis

Given fL2([0,π])f \in L^2\p{\br{0,\pi}}, we say that fGf \in \mathcal{G} if ff admits a representation of the form

f(x)=n=0cncosnxwithn=0(1+n2)cn2<.f\p{x} = \sum_{n=0}^\infty c_n\cos{nx} \quad\text{with}\quad \sum_{n=0}^\infty \p{1 + n^2}\abs{c_n}^2 < \infty.

Show that if fGf \in \mathcal{G} and gGg \in \mathcal{G}, then fgGfg \in \mathcal{G}.

Solution.

Write f(x)=n=0cncosnxf\p{x} = \sum_{n=0}^\infty c_n\cos{nx} and g(x)=n=0dncosnxg\p{x} = \sum_{n=0}^\infty d_n\cos{nx} with the convergence properties given. Observe that

f(x)g(x)=n=0m=0cndmcosnxcosmx=n=0m=0cndm2(cos(n+m)x+cos(nm)x)k=0akcoskx,\begin{aligned} f\p{x}g\p{x} &= \sum_{n=0}^\infty \sum_{m=0}^\infty c_nd_m \cos{nx} \cos{mx} \\ &= \sum_{n=0}^\infty \sum_{m=0}^\infty \frac{c_nd_m}{2} \p{\cos{\p{n + m}x} + \cos{\p{n - m}x}} \\ &\eqqcolon \sum_{k=0}^\infty a_k\cos{kx}, \end{aligned}

so fgfg can be represented in the right form as long as the sum converges absolutely (and hence may be rearranged). This is indeed the case, as

n=0m=0cndmcosnxcosmx(n=0cn)(m=0dm)=(n=01+n2cn11+n2)(m=01+m2dm11+m2)(n=0(1+n2)cn2)1/2(m=0(1+m2)dm2)1/2n=011+n2<,\begin{aligned} \sum_{n=0}^\infty \sum_{m=0}^\infty \abs{c_nd_m \cos{nx} \cos{mx}} &\leq \p{\sum_{n=0}^\infty \abs{c_n}} \p{\sum_{m=0}^\infty \abs{d_m}} \\ &= \p{\sum_{n=0}^\infty \sqrt{1 + n^2}\abs{c_n} \cdot \frac{1}{\sqrt{1 + n^2}}} \p{\sum_{m=0}^\infty \sqrt{1 + m^2}\abs{d_m} \cdot \frac{1}{\sqrt{1 + m^2}}} \\ &\leq \p{\sum_{n=0}^\infty \p{1 + n^2}\abs{c_n}^2}^{1/2} \p{\sum_{m=0}^\infty \p{1 + m^2}\abs{d_m}^2}^{1/2} \sum_{n=0}^\infty \frac{1}{1 + n^2} \\ &< \infty, \end{aligned}

so the sum converges absolutely. By absolute convergence and orthogonality, we get

0πf(x)g(x)2dx=0π(k=0akcoskx)(=0acosx)dxk=00πak2cos2kxdx=π2k=0ak2.\begin{aligned} \int_0^\pi \abs{f\p{x}g\p{x}}^2 \,\diff{x} &= \int_0^\pi \abs{\p{\sum_{k=0}^\infty a_k\cos{kx}} \p{\sum_{\ell=0}^\infty a_\ell\cos{\ell x}}} \,\diff{x} \\ &\leq \sum_{k=0}^\infty \int_0^\pi \abs{a_k}^2 \cos^2{kx} \,\diff{x} \\ &= \frac{\pi}{2} \sum_{k=0}^\infty \abs{a_k}^2. \end{aligned}

Hence, if we show that k=0(1+k2)ak2<\sum_{k=0}^\infty \p{1 + k^2}\abs{a_k}^2 < \infty, then we will have shown that fgL2fg \in L^2 as well. Since we are working with non-negative values, we may re-order the terms:

k=0(1+k2)ak2=14n=0m=0cndm2((1+(n+m)2)+(1+(nm)2))=12n=0m=0cndm2(1+m2+n2)12n=0m=0cndm2(1+m2)(1+n2)=12(n=0(1+n2)cn2)(m=0(1+m2)dm2)<,\begin{aligned} \sum_{k=0}^\infty \p{1 + k^2}\abs{a_k}^2 &= \frac{1}{4} \sum_{n=0}^\infty \sum_{m=0}^\infty \abs{c_nd_m}^2\p{\p{1 + \p{n + m}^2} + \p{1 + \p{n - m}^2}} \\ &= \frac{1}{2} \sum_{n=0}^\infty \sum_{m=0}^\infty \abs{c_nd_m}^2 \p{1 + m^2 + n^2} \\ &\leq \frac{1}{2} \sum_{n=0}^\infty \sum_{m=0}^\infty \abs{c_nd_m}^2 \p{1 + m^2}\p{1 + n^2} \\ &= \frac{1}{2} \p{\sum_{n=0}^\infty \p{1 + n^2}\abs{c_n}^2} \p{\sum_{m=0}^\infty \p{1 + m^2}\abs{d_m}^2} \\ &< \infty, \end{aligned}

so fgGfg \in \mathcal{G}.