Solution.
Observe that B \mathcal{B} B is the subspace of holomorphic functions in L 2 ( μ ) L^2\p{\mu} L 2 ( μ ) , where
μ ( A ) = ∬ A e − ( x 2 + y 2 ) d x d y , \mu\p{A} = \iint_A e^{-\p{x^2 + y^2}} \,\diff{x} \,\diff{y}, μ ( A ) = ∬ A e − ( x 2 + y 2 ) d x d y ,
which is a finite measure on C \C C . Note also that 0 ≤ e − ( x 2 + y 2 ) ≤ 1 0 \leq e^{-\p{x^2 + y^2}} \leq 1 0 ≤ e − ( x 2 + y 2 ) ≤ 1 . Since B \mathcal{B} B is a subspace of a complete space, we only need to show that it is closed in L 2 L^2 L 2 .
Suppose { u n } n ⊆ B \set{u_n}_n \subseteq \mathcal{B} { u n } n ⊆ B is a sequence such that u n → u u_n \to u u n → u in L 2 L^2 L 2 . If we show that u n u_n u n converges locally uniformly, then we're done.
Let R > 0 R > 0 R > 0 and let K = B ( 0 , R ) ‾ K = \cl{B\p{0, R}} K = B ( 0 , R ) . For each z ∈ K z \in K z ∈ K , we have
u n ( z ) = 1 2 π i ∫ ∂ B ( z , r ) u n ( ζ ) ζ − z d ζ = 1 2 π ∫ 0 2 π u n ( z + r e i θ ) d θ , u_n\p{z}
= \frac{1}{2\pi i} \int_{\partial B\p{z,r}} \frac{u_n\p{\zeta}}{\zeta - z} \,\diff\zeta
= \frac{1}{2\pi} \int_0^{2\pi} u_n\p{z + re^{i\theta}} \,\diff\theta, u n ( z ) = 2 πi 1 ∫ ∂ B ( z , r ) ζ − z u n ( ζ ) d ζ = 2 π 1 ∫ 0 2 π u n ( z + r e i θ ) d θ ,
so taking absolute values, multiplying both sides by r r r and integrating from 0 0 0 to 1 1 1 ,
∣ u n ( z ) ∣ ≤ 1 π ∬ B ( z , 1 ) ∣ u n ( x + i y ) ∣ d x d y = 1 π ∬ B ( z , 1 ) ∣ u n ( x + i y ) ∣ e − x 2 + y 2 e − x 2 + y 2 d x d y = 1 π e R + 1 ∬ B ( z , 1 ) ∣ u n ( x + i y ) ∣ e − x 2 + y 2 d x d y ≤ μ ( B ( z , 1 ) ) π e R + 1 ( ∬ C ∣ u n ( x + i y ) ∣ 2 e − ( x 2 + y 2 ) d x d y ) 1 / 2 ( Cauchy-Schwarz ) ≤ μ ( C ) π e R + 1 ∥ u n ∥ L 2 ( μ ) . \begin{aligned}
\abs{u_n\p{z}}
&\leq \frac{1}{\pi} \iint_{B\p{z,1}} \abs{u_n\p{x + iy}} \,\diff{x} \,\diff{y} \\
&= \frac{1}{\pi} \iint_{B\p{z,1}} \frac{\abs{u_n\p{x + iy}} e^{-\sqrt{x^2 + y^2}}}{e^{-\sqrt{x^2 + y^2}}} \,\diff{x} \,\diff{y} \\
&= \frac{1}{\pi e^{\sqrt{R+1}}} \iint_{B\p{z,1}} \abs{u_n\p{x + iy}} e^{-\sqrt{x^2 + y^2}} \,\diff{x} \,\diff{y} \\
&\leq \frac{\mu\p{B\p{z, 1}}}{\pi e^{\sqrt{R+1}}} \p{\iint_\C \abs{u_n\p{x + iy}}^2 e^{-\p{x^2 + y^2}} \,\diff{x} \,\diff{y}}^{1/2}
&& \p{\text{Cauchy-Schwarz}} \\
&\leq \frac{\mu\p{\C}}{\pi e^{\sqrt{R+1}}} \norm{u_n}_{L^2\p{\mu}}.
\end{aligned} ∣ u n ( z ) ∣ ≤ π 1 ∬ B ( z , 1 ) ∣ u n ( x + i y ) ∣ d x d y = π 1 ∬ B ( z , 1 ) e − x 2 + y 2 ∣ u n ( x + i y ) ∣ e − x 2 + y 2 d x d y = π e R + 1 1 ∬ B ( z , 1 ) ∣ u n ( x + i y ) ∣ e − x 2 + y 2 d x d y ≤ π e R + 1 μ ( B ( z , 1 ) ) ( ∬ C ∣ u n ( x + i y ) ∣ 2 e − ( x 2 + y 2 ) d x d y ) 1/2 ≤ π e R + 1 μ ( C ) ∥ u n ∥ L 2 ( μ ) . ( Cauchy-Schwarz )
Thus, { u n } n \set{u_n}_n { u n } n is uniformly bounded on K K K . Since any compact set is contained in a compact ball, we may apply Montel's theorem. Hence, we get a locally uniformly convergent subsequence { u n k } k \set{u_{n_k}}_k { u n k } k on C \C C . Passing to another sequence if necessary, { u n k } k \set{u_{n_k}}_k { u n k } k also converges almost everywhere to u u u , since it converges to u u u in L 2 L^2 L 2 . By local uniform convergence, u u u must also be holomorphic, so B \mathcal{B} B is a closed subspace of L 2 ( μ ) L^2\p{\mu} L 2 ( μ ) , hence complete.