Fall 2014 - Problem 1

Lp spaces

Show that

A={fL3(R)|Rf(x)2dx<}A = \set{f \in L^3\p{\R} \st \int_\R \abs{f\p{x}}^2 \,\diff{x} < \infty}

is a Borel subset of L3(R3)L^3\p{\R^3}.

Solution.

Consider φN ⁣:L3(R)R\func{\phi_N}{L^3\p{\R}}{\R} given by

φN(f)=NNf(x)2dx.\phi_N\p{f} = \int_{-N}^N \abs{f\p{x}}^2 \,\diff{x}.

Observe that

φN(f)φN(g)NNf(x)2g(x)2dxNNf(x)g(x)(f(x)+g(x))dxfgL3f+gL3/2([N,N]).\begin{aligned} \abs{\phi_N\p{f} - \phi_N\p{g}} &\leq \int_{-N}^N \abs{f\p{x}}^2 - \abs{g\p{x}}^2 \,\diff{x} \\ &\leq \int_{-N}^N \abs{f\p{x} - g\p{x}}\p{\abs{f\p{x}} + \abs{g\p{x}}} \,\diff{x} \\ &\leq \norm{f - g}_{L^3}\norm{\abs{f} + \abs{g}}_{L^{3/2}\p{\br{-N,N}}}. \end{aligned}

Notice further that

f+gL3/2([N,N])2/3=(f(x)+g(x))3/2χ[N,N](x)dxf+gL33/4χ[N,N]L4/3,\begin{aligned} \norm{\abs{f} + \abs{g}}_{L^{3/2}\p{\br{-N,N}}}^{2/3} &= \int \p{\abs{f\p{x}} + \abs{g\p{x}}}^{3/2} \chi_{\br{-N,N}}\p{x} \,\diff{x} \\ &\leq \norm{\abs{f} + \abs{g}}_{L^3}^{3/4} \norm{\chi_{\br{-N,N}}}_{L^{4/3}}, \end{aligned}

so φN\phi_N is continuous. Hence,

A=k=1N=1φN1([0,k]),A = \bigcup_{k=1}^\infty \bigcap_{N=1}^\infty \phi_N^{-1}\p{\br{0, k}},

so AA is Borel.