Spring 2013 - Problem 9

convex hull

Let P(z)P\p{z} be a non-constant complex polynomial, all of whose zeroes lie in a half-plane {zCRez<σ}\set{z \in \C \mid \Re{z} < \sigma}. Show that all the zeroes of P(z)P'\p{z} also lie in the same half-plane {zCRez<σ}\set{z \in \C \mid \Re{z} < \sigma}.

Hint: Compute the log-derivative P(z)P(z)\frac{P'\p{z}}{P\p{z}} of PP.

Solution.

Write P(z)=cj=1n(zaj)P\p{z} = c \prod_{j=1}^n \p{z - a_j}, where aja_j are the roots of PP. Then

P(z)=j=1nP(z)zaj    P(z)P(z)=j=1n1zaj.P'\p{z} = \sum_{j=1}^n \frac{P\p{z}}{z - a_j} \implies \frac{P'\p{z}}{P\p{z}} = \sum_{j=1}^n \frac{1}{z - a_j}.

Let z0z_0 be a root of PP'. If z0z_0 is a root of PP also, then clearly z0z_0 is in the same half-plane as the roots of PP. Otherwise, we have 0=j=1n1z0aj0 = \sum_{j=1}^n \frac{1}{z_0 - a_j}. Taking real and imaginary parts, we see

0=j=1nRez0Reajz0aj2and0=j=1nImz0+Imajz0aj2.0 = \sum_{j=1}^n \frac{\Re{z_0} - \Re{a_j}}{\abs{z_0 - a_j}^2} \quad\text{and}\quad 0 = \sum_{j=1}^n \frac{-\Im{z_0} + \Im{a_j}}{\abs{z_0 - a_j}^2}.

Let α=j=1n1z0aj2\alpha = \sum_{j=1}^n \frac{1}{\abs{z_0 - a_j}^2}, and so rearranging yields

Rez0=1αj=1nReajz0aj2andImz0=1αj=1nImajz0aj2z0=1αj=1najz0aj2.\begin{gathered} \Re{z_0} = \frac{1}{\alpha} \sum_{j=1}^n \frac{\Re{a_j}}{\abs{z_0 - a_j}^2} \quad\text{and}\quad \Im{z_0} = \frac{1}{\alpha} \sum_{j=1}^n \frac{\Im{a_j}}{\abs{z_0 - a_j}^2} \\ z_0 = \frac{1}{\alpha} \sum_{j=1}^n \frac{a_j}{\abs{z_0 - a_j}^2}. \end{gathered}

But observe that by definition, 1αj=1n1z0aj2=1\frac{1}{\alpha} \sum_{j=1}^n \frac{1}{\abs{z_0 - a_j}^2} = 1, i.e., z0z_0 is a convex combination of the roots of PP. Thus, z0z_0 lies in the convex hull of the roots of PP, and because {Rez<σ}\set{\Re{z} < \sigma} is convex, it follows that z0z_0 lies in the same half-plane.