Spring 2013 - Problem 8

Hadamard's three-lines theorem, operator theory

Let AA and BB be positive definite n×nn \times n real symmetric matrices with the property

BA1xxfor all xRn\norm{BA^{-1}x} \leq \norm{x} \quad\text{for all } x \in \R^n

where x\norm{x} denotes the usual Euclidean norm: x2=i=1nxi2\norm{x}^2 = \sum_{i=1}^n \abs{x_i}^2.

  1. Show that for each pair x,yRnx, y \in \R^n,

    zy,BzAzxz \mapsto \inner{y, B^zA^{-z}x}

    admits an analytic continuation from 0<z<10 < z < 1 to the whole complex plane. Here ,\inner{\:\cdot\:, \:\cdot\:} denotes the usual Euclidean inner product on Rn\R^n.

  2. Show that

    BθAθxx\norm{B^\theta A^{-\theta} x} \leq \norm{x}

    for all 0θ10 \leq \theta \leq 1.

Solution.
  1. Since AA and BB are positive definite, we can express A=SADASA1A = S_AD_AS_A^{-1} and B=SBDBSB1B = S_BD_BS_B^{-1}, where DAD_A and DBD_B are diagonal matrices with positive entries on the diagonal. Thus, we may define Az=DAzA^z = D_A^z and Bz=DBzB^z = D_B^z, where we raise each entry in the diagonal matrix to the zz-th power. Thus, when expanding out y,BzAzx\inner{y, B^zA^{-z}x}, we get a finite linear combination of functions of the form aza^z with a>0a > 0, hence entire.

  2. We wish to apply Hadamard's three-lines theorem. If Rez=0\Re{z} = 0, then observe that B0B^0 and A0A^0 have eigenvalues 11, so they have operator norm 11. Thus, by Cauchy-Schwarz,

    y,BzAzxxy.\abs{\inner{y, B^zA^{-z}x}} \leq \norm{x}\norm{y}.

    If Rez=1\Re{z} = 1, write z=1+biz = 1 + bi. The eigenvalues of Aib,BibA^{-ib}, B^{ib} take the form λib=eiblogλ\lambda^{ib} = e^{ib\log{\lambda}}, which have absolute value 11. Hence,

    BzAz=BibBA1AbiBibBA1Abi1\norm{B^zA^{-z}} = \norm{B^{ib}BA^{-1}A^{-bi}} \leq \norm{B^{ib}}\norm{BA^{-1}}\norm{A^{-bi}} \leq 1

    by assumption, so by Cauchy-Schwarz again,

    y,BzAzxBzAzxyxy.\abs{\inner{y, B^zA^{-z}x}} \leq \norm{B^zA^{-z}x}\norm{y} \leq \norm{x}\norm{y}.

    Since fx,y(z)=y,BzAzxf_{x,y}\p{z} = \inner{y, B^zA^{-z}x} is entire, it is in particular holomorphic near the strip S={z0Rez1}S = \set{z \mid 0 \leq \Re{z} \leq 1}, so by the Hadamard three-lines theorem, if we set M(t)=supbfx,y(t+ib)M\p{t} = \sup_{b}\,\abs{f_{x,y}\p{t + ib}} and θ=1t\theta = 1 - t for θ[0,1]\theta \in \br{0, 1}, we obtain

    M(θ)M(0)tM(1)1txy.M\p{\theta} \leq M\p{0}^t M\p{1}^{1-t} \leq \norm{x}\norm{y}.

    Hence, in particular, y,BθAθxxy\abs{\inner{y, B^\theta A^{-\theta}x}} \leq \norm{x}\norm{y}. Taking the supremum over y=1\norm{y} = 1, we obtain

    BθAθxx,\norm{B^\theta A^{-\theta}x} \leq \norm{x},

    which completes the proof.