Spring 2013 - Problem 6

Fourier analysis

Let C0(R)={F ⁣:RC|F is continuous and F(ξ)0 as ξ±}C_0\p{\R} = \set{\func{F}{\R}{\C} \st F \text{ is continuous and } F\p{\xi} \to 0 \text{ as } \xi \to \pm\infty}; this is a Banach space under the supremum norm. Additionally, let

X={ξReiξxf(x)dx|fL1(R)}.X = \set{\xi \mapsto \int_\R e^{i\xi x} f\p{x} \,\diff{x} \st f \in L^1\p{\R}}.

Show the following three properties of XX:

  1. XX is a subset of C0(R)C_0\p{\R}.
  2. XX is a dense subset of C0(R)C_0\p{\R}.
  3. XC0(R)X \neq C_0\p{\R}.
Solution.
  1. Write f^(ξ)=Reiξxf(x)dx\hat{f}\p{\xi} = \int_\R e^{i\xi x} f\p{x} \,\diff{x}. Then if xinξxi_n \to \xi in R\R, we have

    f^(ξn)f^(ξ)Rf(x)eiξnxeiξxdx.\abs{\hat{f}\p{\xi_n} - \hat{f}\p{\xi}} \leq \int_\R \abs{f\p{x}}\abs{e^{i\xi_nx} - e^{i\xi x}} \,\diff{x}.

    The integrand is bounded by 2f(x)L1(R)2\abs{f\p{x}} \in L^1\p{\R} by assumption, so we may apply dominated convergence and continuity of eiξxe^{i\xi x} to see that f^C(R)\hat{f} \in C\p{\R}.

    Next, observe

    f^(ξ)=eπiReiξxf(x)dx=Reiξ(x+πξ)f(x)dx=Reiξxf(xπξ)dx(xx+πξ)    2f^(ξ)=Reiξx(f(x)f(xπξ))dx    f^(ξ)12ff(πξ)L1.\begin{aligned} \hat{f}\p{\xi} &= -e^{\pi i} \int_\R e^{i\xi x} f\p{x} \,\diff{x} \\ &= -\int_\R e^{i\xi\p{x + \frac{\pi}{\xi}}} f\p{x} \,\diff{x} \\ &= -\int_\R e^{i\xi x} f\p{x - \frac{\pi}{\xi}} \,\diff{x} && \p{x \mapsto x + \frac{\pi}{\xi}} \\ \implies 2\hat{f}\p{\xi} &= \int_\R e^{i\xi x}\p{f\p{x} - f\p{x - \frac{\pi}{\xi}}} \,\diff{x} \\ \implies \abs{\hat{f}\p{\xi}} &\leq \frac{1}{2} \norm{f - f\p{\:\cdot\: - \frac{\pi}{\xi}}}_{L^1}. \end{aligned}

    Notice that f(x)f(xπξ)0f\p{x} - f\p{x - \frac{\pi}{\xi}} \to 0 as ξ\abs{\xi} \to \infty, and f(x)f(xπξ)f(x)+f(xπξ)L1(R)\abs{f\p{x} - f\p{x - \frac{\pi}{\xi}}} \leq \abs{f\p{x}} + \abs{f\p{x - \frac{\pi}{\xi}}} \in L^1\p{\R}, so by dominated convergence, f^(ξ)0\abs{\hat{f}\p{\xi}} \to 0 as ξ\abs{\xi} \to \infty. Thus, f^C0(R)\hat{f} \in C_0\p{\R}.

  2. Cc(R)C_c^\infty\p{\R} is dense in C0(R)C_0\p{\R} via convolutions against a smooth bump function. Thus, since Cc(R)C_c^\infty\p{\R} are Schwartz functions, the Schwartz space is dense in C0(R)C_0\p{\R}. Since the Fourier transform is a bijection on the Schwartz space, it follows that XX contains the Schwartz space, hence dense in C0(R)C_0\p{\R}.

  3. Let F ⁣:L1(R)C0(R)\func{\mathcal{F}}{L^1\p{\R}}{C_0\p{\R}}, ff^f \mapsto \hat{f}, where C0(R)C_0\p{\R} is equipped with the uniform norm. Then F\mathcal{F} is a linear function between two Banach spaces. F\mathcal{F} is an injective mapping, since it's essentially the Fourier transform, and it is continuous:

    f^(ξ)g^(ξ)Reiξxf(x)g(x)dx=fgL1.\abs{\hat{f}\p{\xi} - \hat{g}\p{\xi}} \leq \int_\R \abs{e^{i\xi x}}\abs{f\p{x} - g\p{x}} \,\diff{x} = \norm{f - g}_{L^1}.

    Thus, if F\mathcal{F} were surjective, then by the open mapping theorem, F\mathcal{F} would be an open map, and it would have continuous inverse. To see why this is impossible, it suffices to find a sequence of functions {gn}nC0(R)\set{g_n}_n \subseteq C_0\p{\R} such that gn=F(fn)g_n = \mathcal{F}\p{f_n} for all n1n \geq 1, {gn}n\set{g_n}_n is bounded in C0(R)C_0\p{\R}, but {fn}n\set{f_n}_n is unbounded in L1(R)L^1\p{\R}.

    Let hn=χ[n,n]h_n = \chi_{\br{-n, n}}, and let gn=hnh1g_n = h_n * h_1. Observe that

    Reiξxhn(ξ)dξ=nncosξxisinξxdx=2sinnxx,\int_\R e^{-i\xi x}h_n\p{\xi} \,\diff{\xi} = \int_{-n}^n \cos{\xi x} - i\sin{\xi x} \,\diff{x} = \frac{2\sin{nx}}{x},

    and it follows via the inverse Fourier transform that

    F(4sinnxsinxx2)=F(2sinnxx)F(2sinxx)=hnh1=gn.\mathcal{F}\p{\frac{4\sin{nx}\sin{x}}{x^2}} = \mathcal{F}\p{\frac{2\sin{nx}}{x}} * \mathcal{F}\p{\frac{2\sin{x}}{x}} = h_n * h_1 = g_n.

    Thus, gnC0(R)g_n \in C_0\p{\R} and uniformly bounded via

    gn(ξ)hnLh1L12,\abs{g_n\p{\xi}} \leq \norm{h_n}_{L^\infty} \norm{h_1}_{L^1} \leq 2,

    but

    fnL1=R4sinnxsinxx2dx4Rsinnxsinxx2dx=4nRsinxsinxnx2dx(xnx)8nnπ0nπ/2sinxxdx(convexity of sinx)=8π0nπ/2sinxxdxn.\begin{aligned} \norm{f_n}_{L^1} &= \int_\R \abs{\frac{4\sin{nx}\sin{x}}{x^2}} \,\diff{x} \\ &\geq 4 \int_\R \abs{\frac{\sin{nx}\sin{x}}{x^2}} \,\diff{x} \\ &= 4n \int_\R \abs{\frac{\sin{x}\sin{\frac{x}{n}}}{x^2}} \,\diff{x} && \p{x \mapsto nx} \\ &\geq \frac{8n}{n\pi} \int_0^{n\pi/2} \abs{\frac{\sin{x}}{x}} \,\diff{x} && (\text{convexity of } \sin{x}) \\ &= \frac{8}{\pi} \int_0^{n\pi/2} \abs{\frac{\sin{x}}{x}} \,\diff{x} \xrightarrow{n\to\infty} \infty. \end{aligned}

    Hence, F1\mathcal{F}^{-1} is unbounded on C0(R)C_0\p{\R}, so F\mathcal{F} cannot be surjective, and this completes the proof.