Let u∈H. Since D is simply connected, u=Ref for some holomorphic function on the disk. Write f(z)=∑n=0∞anzn so that ux(0)=Rea1. Thus, for r∈(0,1),
f(reiθ)=n=0∑∞anrneinθ=n=0∑∞anrn(cosnθ+isinnθ)⟹u(reiθ)=n=0∑∞rn(Re(an)cosnθ−Im(an)sinnθ).
By a change of variables, we have
∫D∣u(x,y)∣2dA=∫01∫02πru2(reiθ)dθdr=∫01∫02πr(n=0∑∞rn(Re(an)cosnθ−Im(an)sinnθ))2dθdr=∫01∫02πrn,m=0∑∞rnrm((Re(an)cosnθ−Im(an)sinnθ))((Re(am)cosmθ−Im(am)sinmθ))dθdr=∫01n=0∑∞r2n+1∫02π(Re(an)2cos2nθ+Im(an)2sin2nθ)dθdr,
by orthogonality of the trigonometric terms and uniform convergence of the power series for u on compact sets. Continuing,
=≥=∫01n=0∑∞r2n+1∫02π(Re(an)2cos2nθ+Im(an)2sin2nθ)dθdr∫01πn=0∑∞r2n+1(Re(an)2+Im(an)2)dr∫01πr3Re(a1)2dr4πRe(a1)2.
Hence, ux(0)≤π2∥u∥L2, so the functional is bounded.
Notice that if u(x,y)=x, then
∫D∣u(x,y)∣2dA=∫01∫02πr3cos2θdθdr=4π,
so v(x,y)=π2x satisfies ∥v∥L2=1. Moreover, vx(0)=π2, so the functional attains the upper bound π2, i.e., its norm is π2.