Spring 2013 - Problem 4

Banach-Alaoglu

Let KK be a non-empty compact subset of R3\R^3. For any Borel probability measure μ\mu on KK, define the Newtonian energy I(μ)(0,]I\p{\mu} \in \poc{0, \infty} by

I(μ)=KK1xydμ(x)dμ(y)I\p{\mu} = \int_K \int_K \frac{1}{\abs{x - y}} \,\diff\mu\p{x} \,\diff\mu\p{y}

and let RKR_K be the infimum of I(μ)I\p{\mu} over all Borel probability measures μ\mu on KK. Show that there exists a Borel probability measure μ\mu such that I(μ)=RKI\p{\mu} = R_K.

Solution.

By definition, there exists a sequence of Borel probability measures {μn}n\set{\mu_n}_n on KK such that I(μn)RKI\p{\mu_n} \to R_K. Viewing {μn}n(C(K))\set{\mu_n}_n \subseteq \p{C\p{K}}^*, we find via Banach-Alaoglu a Borel probability measure μ\mu and a subsequence {μnk}k\set{\mu_{n_k}}_k such that for any continuous function fC(K)f \in C\p{K},

Kf(x)dμn(x)nKf(x)dμ(x).\int_K f\p{x} \,\diff\mu_n\p{x} \xrightarrow{n\to\infty} \int_K f\p{x} \,\diff\mu\p{x}.

Next, we will show that μnμnμμ\mu_n \otimes \mu_n \to \mu \otimes \mu weakly on C(K×K)C\p{K \times K}. Notice that A={k=1nfk(x)gk(y)fk,gkC(K)}A = \set{\sum_{k=1}^n f_k\p{x}g_k\p{y} \mid f_k, g_k \in C\p{K}} is closed under addition, scalar multiplication, and multiplication. It also separates points: if (x,y)(x,y)\p{x, y} \neq \p{x', y'}, say, xxx \neq x', then x1x \cdot 1 separates them. Since 1A1 \in A, it vanishes nowhere, so by Stone-Weierstrass, AA is dense in C(K×K)C\p{K \times K}. Hence, given ε>0\epsilon > 0 and fC(K×K)f \in C\p{K \times K}, there exist g,hC(K)g, h \in C\p{K} such that f(x,y)g(x)h(y)L<ε\norm{f\p{x, y} - g\p{x}h\p{y}}_{L^\infty} < \epsilon. By weak convergence, if nn is large enough, then

K×Kg(x)h(y)dμ(x)dμ(x)K×Kg(x)h(y)dμn(x)dμn(x)=(Kgdμ)(Khdμ)(Kgdμn)(Khdμn)(Kgdμ)(Khdμ)(Kgdμ)(Khdμn)+(Kgdμ)(Khdμn)(Kgdμn)(Khdμn)KgdμKhdμKhdμn+KhdμnKgdμKgdμnε,\begin{aligned} \abs{\int_{K \times K} g\p{x}h\p{y} \,\diff\mu\p{x} \,\diff\mu\p{x} - \int_{K \times K} g\p{x}h\p{y} \,\diff\mu_n\p{x} \,\diff\mu_n\p{x}} &= \abs{\p{\int_K g \,\diff\mu} \p{\int_K h \,\diff\mu} - \p{\int_K g \,\diff\mu_n} \p{\int_K h \,\diff\mu_n}} \\ &\leq \abs{\p{\int_K g \,\diff\mu} \p{\int_K h \,\diff\mu} - \p{\int_K g \,\diff\mu} \p{\int_K h \,\diff\mu_n}} + \abs{\p{\int_K g \,\diff\mu} \p{\int_K h \,\diff\mu_n} - \p{\int_K g \,\diff\mu_n} \p{\int_K h \,\diff\mu_n}} \\ &\leq \abs{\int_K g \,\diff\mu}\abs{\int_K h \,\diff\mu - \int_K h \,\diff\mu_n} + \abs{\int_K h \,\diff\mu_n}\abs{\int_K g \,\diff\mu - \int_K g \,\diff\mu_n} \\ &\leq \epsilon, \end{aligned}

since {Kgdμn}n,{Khdμn}n\set{\int_K g \,\diff\mu_n}_n, \set{\int_K h \,\diff\mu_n}_n are convergent, hence bounded sequences. Thus,

K×Kfd(μμ)K×Kfd(μnμn)K×Kfghd(μμ)+K×Kfgh+d(μnμn)+K×Kghd(μμ)K×Kghd(μnμn)εμ(K)2+εμn(K)2+K×Kghd(μμ)K×Kghd(μnμn)3ε\begin{aligned} \abs{\int_{K \times K} f \,\diff\p{\mu \otimes \mu} - \int_{K \times K} f \,\diff\p{\mu_n \otimes \mu_n}} &\leq \int_{K \times K} \abs{f - gh} \,\diff\p{\mu \otimes \mu} + \int_{K \times K} \abs{f - gh} + \,\diff\p{\mu_n \otimes \mu_n} + \abs{\int_{K \times K} gh \,\diff\p{\mu \otimes \mu} - \int_{K \times K} gh \,\diff\p{\mu_n \otimes \mu_n}} \\ &\leq \epsilon\mu\p{K}^2 + \epsilon\mu_n\p{K}^2 + \abs{\int_{K \times K} gh \,\diff\p{\mu \otimes \mu} - \int_{K \times K} gh \,\diff\p{\mu_n \otimes \mu_n}} \\ &\leq 3\epsilon \end{aligned}

which proves the claim. To complete the proof, observe that (x,y)1xy\p{x, y} \mapsto \frac{1}{\abs{x - y}} is lower semicontinuous: it is continuous, except when x=yx = y, where it is infinity. It is also bounded below by 00, so there exists a sequence of non-negative continuous functions {fn}n\set{f_n}_n which increase to it. Thus,

K×KfN(x,y)dμ(x)dμ(y)=limnK×KfN(x,y)dμn(x)dμn(y)limnI(μn)=RK.\begin{aligned} \int_{K \times K} f_N\p{x, y} \,\diff\mu\p{x} \,\diff\mu\p{y} &= \lim_{n\to\infty} \int_{K \times K} f_N\p{x, y} \,\diff\mu_n\p{x} \,\diff\mu_n\p{y} \\ &\leq \lim_{n\to\infty} I\p{\mu_n} \\ &= R_K. \end{aligned}

By monotone convergence,

I(μ)limNK×KfN(x,y)dμ(x)dμ(y)RK.I\p{\mu} \leq \lim_{N\to\infty} \int_{K \times K} f_N\p{x, y} \,\diff\mu\p{x} \,\diff\mu\p{y} \leq R_K.

By definition of RKR_K, RKI(μ)R_K \leq I\p{\mu}, so these are equalities.